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F.YF.CTTTTVE SUMMARY 

Previous work on the development and numerical implementation of the Bounding 

Surface Plasticity model for clays is discussed. Modifications are made to the hardening 

relationship to improve the numerical performance in the tensile range. A rate equation for 

the loading surface is developed. Modifications are made to the invariant description of the 

bounding surface to avoid numerical difficulties in evaluating the derivatives. 

The Closest Point Projection method is described for simple and general internal 

variable plasticity models. The method is developed within the classical plasticity 

framework and uses the Newton-Raphson method to satisfy the implicit integration of the 

rate equations and the consistency condition. An explicit treatment of the internal variables 

is discussed. Application of this method for the Bounding Surface Plasticity model for 

clays is developed by adding an internal variable and using the rate equation for the loading 

surface. 

A new algorithm coined "the Reduced Newton method" is developed for the 

Bounding Surface Plasticity model for clays. It involves mapping the stress rate equations, 

internal variable rate equations and the consistency condition into two nonlinear equations 

and integrating them with a backwards Euler formula using Newton-Raphson iteration. 

Comparison of predictions for a number of sample problems is made using the 

trapezoidal integration, Closest Point and Reduced Newton methods. "Exact" solutions for 

stress points that start on the bounding surface are developed by assigning an arbitrary 

stress path and calculating the corresponding strains using numerical integration with a tight 

tolerance. These "exact" solutions are used to evaluate the effectiveness of the proposed 

general numerical implementation of the Bounding Surface model. 

A standard effective stress interface is proposed for finite element programs that use 

the Newton-Raphson method. The Reduced Newton model is implemented within the 

in 



DYSAC2 finite element program and is used to analyze an earth embankment subjected to 

earthquake and shock loads. 
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0. Numerical Methods for Implementing the Bounding Surface 

Plasticity Model for Clays 

In most structural or geotechnical engineering studies, the behavior of the object 

being designed is the focus. The object is loaded externally with known and unknown 

forces (e.g., deadweight, wind, soil, vehicles, support reactions, etc.) and the observed 

behavior is in displacements (e.g., deformation under load) and, to some degree, 

appearance (e.g., concrete turning to rubble). To analyze this behavior mathematically, the 

following sets of equations must be satisfied: 

1) the equations of equilibrium (equations of motion for dynamic problems), 

2) the equations of compatibility (kinematics), and 

3) the constitutive equations. 

For quasistatic problems the equilibrium equations relate the forces (internal and 

external) to the stresses. The compatibility equations provide the kinematic relationship 

between the displacements and the strains. The constitutive equations are dependent on the 

type of material and relate the stresses to the strains. The relationships among these 

equations are shown in Figure 0.0-1. 

The focus of this study is on the constitutive equations and their numerical 

implementation using the Finite Element Method (FEM). It is assumed that the finite 

element program is nonlinear, implicit and has already addressed the equilibrium and 

compatibility equations. The FEM is generally a displacement-based formulation which 

implies that the constitutive equations are given strains and expected to return stresses and 

the tangent moduli to the global solution iteration procedure. 



The constitutive equations are developed to model the behavior of the material with 

a given set of measurable parameters obtained from laboratory tests. To develop these 

constitutive equations the following issues must be addressed: 

1) development of the constitutive model to match the material behavior under 

consideration, and 

2) implementation of the model within an appropriate solution algorithm (usually 

numerical). 

In the evolution of the constitutive model, a great deal of effort is spent comparing 

experimental data with numerical results to validate and develop confidence in the model. 

Important physical and geometric parameters such as void ratio for soils are incorporated 

into the model. These physical parameters allow the model to have general application to a 

family of material types (e.g., clays and silts). The constitutive model used in this study is 

the Bounding Surface Plasticity model for clays. 

The Bounding Surface Plasticity concept was developed at the University of 

California at Berkeley in the mid 1970's and it promised to be computationally efficient. 

The concept provided for a gradual transition from elastic to plastic material behavior and 

was originally developed for metals. It became especially useful for materials that have no 

distinct yield points (e.g., soils, concrete, etc.). Bounding Surface Plasticity was applied 

to clay soils at the University of California at Davis during the mid 1980's and was 

validated using traditional laboratory and geotechnical centrifuge soils tests. 

The subject for this study is the numerical implementation of the single ellipse, 

Bounding Surface model for geotechnical analysis of clay soils. The implementation 



addresses two issues: 

1) efficiency, and 

2) accuracy. 

The importance of efficiency lies in the structure of the solution algorithm of a 

typical nonlinear, implicit finite element program as illustrated by the nested loops shown in 

Figure 0.0-2. Evaluation of the constitutive equations occurs within the innermost loop. 

Thus, efficiency of the constitutive model evaluation significantly impacts the performance 

of the global analysis of a geotechnical structure. 

Accurate tangent moduli can enhance the performance of the global solution 

algorithm by helping to provide an optimal direction (when multiplied by the residual 

vector) for the iteration which will improve the global convergence. Also, implied with the 

issue of accuracy is robustness. Even for calculations that involve small solution time steps 

in the outer loop, the global iteration method can sometimes generate large trial strains 

during the iteration process even though the eventual incremental strains may be small. 

These large strains are provided as input to the constitutive model and reasonable stresses 

and tangent moduli are expected to be returned from the material properties algorithm. A 

constitutive model and its numerical implementation that cannot provide reasonable values 

for large strain increments may be useless even for calculations that involve small time 

steps. 

One approach for dealing with the accuracy/robustness issue is the use of a uniform 

substepping method at the material model level. Given a set of incremental strains from the 

global iteration, the predicted stresses and tangent moduli can be compared using different 

numbers of substeps across the increment. If the stresses from one substep level are within 

a given tolerance of the previous level (e.g., one step versus two substeps) then the finer 



solution is accepted. In the global analysis, this assures that the stresses and tangent 

moduli of neighboring elements are obtained within the same degree of accuracy in stress 

space. The uniform substepping approach also has the added advantage of seeking the 

correct answer when Newton-Raphson-based methods, which cannot distinguish the 

correct solution from extraneous solutions of a nonlinear problem. 

The original numerical implementation of the Bounding Surface model uses 

trapezoidal integration, which is second order accurate and relatively stable. It requires 

information at the beginning and at the end of the step and thus needs to iterate. The 

implementation also includes substepping to enhance accuracy and robustness. Difficulties 

arise in certain analyses where the consistency condition is not exactly satisfied at the end 

of the increment, that is, where the computed stress point falls outside the bounding surface 

in stress space. This study looks at alternative numerical implementations that would 

prevent this behavior and promote greater efficiency and accuracy. 

0.1 Report Layout 

Section 1 briefly describes the theoretical aspects of the single ellipse Bounding 

Surface model for clays. It also describes theoretical and numerical modifications that were 

made to improve the original model and develops relationships that are used in its numerical 

implementation. 

Section 2 describes the Closest Point Projection algorithm and its application to the 

implementation of the Bounding Surface model. The Closest Point method is a general 

three dimensional methodology for implementing constitutive models and was originally 

developed in nonlinear optimization theory. 

The Reduced Newton algorithm is described in Section 3. It is a specific Newton- 

Raphson-based method applied to the Bounding Surface model and reduces the number of 

differential equations to be solved at the innermost iteration level. 



N     Section 4 compares both the Closest Point and Reduced Newton methods as well as 

the original trapezoidal implementation to numerically "exact" solutions of the constitutive 

equations. Exact solutions include stress paths that both start on and within the bounding 

surface and highlights the behavior of the solution methods. 

Section 5 describes the implementation of the Reduced Newton model into the 

DYSAC2 finite element computer program. Implementation issues are discussed. The 

resulting code is then applied to the solution of a realistic geotechnical engineering problem. 

Conclusions and recommendations are given in Section 6. 
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1. Bounding Surface Plasticity Model for Clays 

The Bounding Surface plasticity concept was first introduced for modeling metals at 

the University of California at Berkeley (UCB) in the mid 1970's [Dafalias and Popov, 

1975]. The concept was applied to clays at the University of California at Davis (UCD) in 

the early 1980's [Dafalias and Herrmann, 1980a; Dafalias et. al. 1980b; Dafalias et. al., 

1980c; Dafalias 1980d; Dafalias and Herrmann, 1980e; Dafalias et. al., 1981; Herrmann, 

et. al., 1982; DeNatale, et. al. 1983; Herrmann, et. al. 1983a; Herrmann and Mish, 1983b; 

Herrmann, et. al. 1983c; Herrmann and Mish, 1983d; Herrmann and Mish, 1983e; 

Herrmann, et. al., 1985; Kaliakin, 1985; Shen, et. al., 1986; Dafalias and Herrmann, 

1986; Herrmann, et. al., 1987]. A single ellipse model with an associated plastic flow was 

developed for clays in the mid 1980's [Kaliakin, 1985; Herrmann, et. al.; 1985; Herrmann, 

et. al., 1987]. The model was validated using traditional soils tests and centrifuge tests 

conducted at UCD [Herrmann, et. al., 1982; Herrmann, et. al., 1987] 

The following sections describe the Bounding Surface model and the plasticity 

framework in which it resides. Section 1.1 briefly lays out the classical plasticity 

framework for associative flow. Section 1.2 discusses the Bounding Surface Plasticity 

concept. Section 1.3 describes the nonlinear elastic volumetric relationship, Section 1.4 

presents the single ellipse Bounding Surface, Section 1.5 details the hardening function and 

Section 1.6 describes the plastic modulus. This work was developed at UCD for clays 

[Kaliakin, 1985] and is provided for reference. A small modification is made in the 

hardening function to avoid numerical difficulties in Section 1.5. A new relationship for 

the loading surface is given in Section 1.7 that lays out the Bounding Surface model in a 

more conventional classical plasticity framework. Finally, a modification to improve the 

invariant form description of the model [Kaliakin, 1985] is described in Section 1.8. 



1.1   Classical Plasticity Framework for Associative Plasticity 

Before introducing the Bounding Surface Plasticity model, the classical plasticity 

framework using the associative flow rule [Dafalias, 1990] is presented in this section. 

Classical plasticity assumes that the material has a region of elastic behavior within which 

loading followed by unloading returns to the original state. During loading, however, if 

the stress reaches a defined stress state, known as the yield surface, the material begins to 

yield or permanently deform. This yield surface in one dimension consists of two points 

and is shown on a simple stress-strain diagram in Figure 1.1-1. Unloading after yielding 

does not return to the initial state, but leaves a permanent deformation and possibly residual 

stresses. The process of yielding can also redefine the size, shape and/or location of the 

yield surface, as shown in Figure 1.1-1. In this case, the change in the surface is a result 

of the yielding and is a function of the stress and/or strain history. The history of the 

change in the surface at a particular material point is described by the values of one or more 

internal variables. The yield surface can also be described by a number of external 

variables that are functions of temperature, humidity, age and other conditions. The 

mathematical framework for this classical plasticity model will be described below. 

The yield function for a classical plasticity model is shown as a one-dimensional 

surface in Figure 1.1-1. For more complex analyses (two- and three-dimensional) the yield 

function is described in stress space as a multi-dimensional surface (see Figure 1.1-2). The 

internal variables not only describe how the surface grows, but how it translates, changes 

shape and/or orientation. The yield surface is a function of both the stresses and the 



internal variables, and is given as: 

f((7,q) = 0 (1.1-1) 

where    /= yield function 

ö" = vector of stresses, [crx, <7y, oz, x^, • • • j 

# = vector of internal variables, \q{, q2, • • ■] . 

Definition of the yield surface places some restrictions on the stresses. Stress states 

can lie within the surface (elastic region) or on the surface itself (plastic or, if unloading, 

elastic). They cannot, however, exist outside of the surface. This can be easily seen from 

Figure 1.1-1. 

The strains are assumed to decompose into elastic and plastic portions. This 

kinematic assumption describing the additive nature of the elastic and plastic strain rates is 

given as: 

£ = £e+£p (1.1-2) 

where     £ = vector of total strain rates, [ex, ev, ez, y ^,... I 

£e = vector of elastic strain rates 

£p = vector of plastic strain rates. 

The strains are described in terms of rate equations (i.e., they evolve over time) 

because time incorporates the history of the plasticity. Time can also allow for a viscous 

behavior although this is not included in this study. The stress rate is a function of the 
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elastic strain rates only and is given as: 

a = Cee = c(e-£p) (1.1-3) 

where      o = vector of stress rates 

C = elastic constitutive matrix, 

C C ^xx ^xy 

c c ^vx '-'vy 

Equation 1.1-3 describes how the stress rates are proportional to the elastic strain 

rates. As in the one dimensional case, elastic loading and then unloading will return to the 

same state. When the stresses reach the yield state (Equation 1.1-1), plastic flow 

commences (i.e., plastic straining begins). Plastic flow is described by the increase in the 

plastic strains and is given by the following rate equation: 

£p = Y N(o,q) (1.1-4) 

where     7= plasticity parameter; y> 0, for plastic flow (f= 0), and 

7= 0, for elastic loading or unloading (f< 0) 

N(o, q) = a function describing the plastic strain directions. 

The associative flow rule assumes that the direction of plastic flow is perpendicular 

to the yield surface which is described in stress space (Equation 1.1-1). The rate equations 

for the plastic strains are therefore a function of the yield surface and are given as: 

ep =7 
d<7 

(1.1-5) 

3f 
where   — = vector of yield function derivatives 

do 
i.e., 

df     df 
dor' do,.' 

T\ 
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The change in the internal variables can be described in terms of rate equations 

which are given as: 

q = yh{a,q) (1.1-6) 

where     h(a,q) = direction of internal variable rates. 

Because of the restriction that the stress state cannot exist outside the yield surface 

(Equation 1.1-1), during plastic flow the stress point must remain on the surface. This is 

described mathematically as the consistency condition and is given as: 

/ = 0 (1.1-7) 

Applying the consistency condition to the yield state (Equation 1.1-1) and applying 

the chain rule results in: 

— er + — # = 0 
do        dq 

(1.1-8) 

Substituting in Equation 1.1-6 into Equation 1.1-8 results in and expression for the 

plasticity parameter in terms of the stress rates and is given as: 

7 
1   fdf   ^ o 

K„ da 
(1.1-9) 

) 

where     K = plastic modulus = h. 

The plasticity parameter can be expressed in terms of the strains by substituting 

Equations 1.1-3 and 1.1-5 into Equation 1.1-9. This is given as: 

y 

Ce 

rdf)c(df^ 
(1.1-10) 

KP + 

\doj \doj 
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Combining Equations 1.1-3, 1.1-5 and 1.1-10 results in the expression for the 

plastic constitutive matrix. This is given as: 

CT = 

f X\ 
C 

C+H{y) 

df\df 
do) 

f 7x\ 

\d(7 ) 
C 

'%}c(%^ 
K

P 
+ 

\d<Jj ydaj 

(1.1-11) 

where     H(y) = Heavyside function; H(y) = 0, y< 0 and H(y) =l,y>0. 

In classical plasticity, a plastic step occurs (for a stress point starting on the yield 

surface) when a strain increment produces an elastic stress state outside of the yield 

surface. This is mathematically given by a positive plasticity parameter (Equation 1.1-10). 

The plastic step requires integration of Equation 1.1-11 (note that the rate equations for the 

plastic strains and internal variables were used in the derivation of this equation). 

Numerical integration techniques, such as the backward and forward Euler and the 

trapezoidal methods, provide approximations for these integrations. The consistency 

condition (i.e., enforcing the stress point to remain on the surface) is satisfied indirectly 

through the plasticity parameter and an accurate integration. Since the integration is an 

approximation, the resulting integration error often fails to satisfy the consistency condition 

exactly. 

1.2  Bounding Surface Plasticity Concept 

The Bounding Surface Plasticity concept was introduced at the University of 

California, Berkeley in the 1970's [Dafalias and Popov, 1975]. The motivation for the 

concept was the observation that for most materials any stress-strain curve (including 

reversals) eventually converged to well defined "bounds" in stress-strain space. These 

bounds cannot be crossed but can change position during loading. An additional 

observation was that the rate of convergence of the stress-strain curve to the bound 

appeared to be a function of the distance of the current state from the bound. This concept 
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can be described with a typical uniaxial stress-plastic strain response shown in Figure 1.2- 

1. As the stress approaches the bound, its rate of convergence or its uniaxial plastic 

modulus {ET) decreases until it becomes tangent with the bound. The modulus is therefore 

a function of the distance between the current stress state (a) and the "image" stress (a) on 

the bound. 

The bounding surface in multiaxial stress space is described in a similar manner to a 

yield surface in "classical" plasticity (i.e., stress points can exist on and within, but not 

outside the bounding surface). The unique feature of the bounding surface concept is that 

there is a gradual transition from elasticity to plasticity (i.e., plasticity can occur within the 

surface), unlike traditional yield surface models where plasticity occurs only when the 

stress point is on the surface. To accomplish this, the theory incorporates particular 

features that allow it to operate within the classical incremental plasticity framework. These 

features will be discussed in the following paragraphs. 

Bounding Surface Plasticity was developed at UCB [Dafalias and Popov, 1975] as 

a means for introducing a gradual transition from elasticity to plasticity. The bounding 

surface is defined in stress space and is given as: 

F{a,q) = 0 (1.2-1) 

where     F = bounding surface function 

Ö = vector of "image" stresses. 

The bounding surface can also have an elastic nucleus defined within it. The 

current stress point defines another surface known as the loading surface. These surfaces 

are shown in Figure 1.2-2. 

For "classical" associative plasticity, the plastic strain rates are a function of the 

plasticity parameter and are perpendicular to the yield surface at the stress point (Equation 

1.1-5). For stress points within the bounding surface this information is defined by 
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drawing a line from a projection center (a) through the current stress point and projecting 

this to a point on the bounding surface (see Figure 1.2-2). This is known as the mapping 

rule. The normal for the plastic strain rate is taken at this "image" stress point on the 

bounding surface. The strain rate is defined as: *& 

dF 
£P=Y^= (1-2-2) 

da 

The mapping rule defines how the current stress is related to the "image" stress. It 

is defined as: 

ä = b{a-a) + a (1-2-3) 

where     b - measure of distance between stress point and surface 

a = projection center. 

Note that b ranges from 1 (when the current and "image" stress point coincide) to °° 

(at the projection center). This parameter also implicitly defines the location of the loading 

surface. The evolution of the loading surface is discussed in Section 1.7. 

The plasticity parameter is defined by applying the consistency condition to the 

image stress points on the surface. For points within the bounding surface an equivalent 

relationship is defined [Kaliakin, 1985] and is given as: 

1 
1 = — 

p 

dF 
 <7 1 = 
dö    )     K„ 

dF 
 ' 
da 

(1-2-4) 

- dF 
where      K  = h = plastic modulus at the image stress point 

dq 

a = image stress rate 

K = plastic modulus at the current stress point 
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a - current stress rate. 

Equation 1.2-2 is the crux of Bounding Surface Plasticity. It describes how the 

plasticity (via the hardening modulus) occurs within the bound. The plastic modulus at the 

image stress point [K\ is defined via the consistency condition, as in classical plasticity, 

with Equation 1.1-9. The plastic modulus at the current stress point (Kp), within the 

bounding surface, is a function of Kp (i.e., Kp = Kp for stress points on the bound) and 

the distance to the bounding surface (b). This is defined in more detail in Section 1.6. 

The following sections describe various aspects and modifications made to the 

Bounding Surface Plasticity concept for clays [Kaliakin, 1985; Herrmann, et. al., 1985]. 

1.3  Development of Nonlinear Elastic Volumetric Relationship 

The relationship of the elastic change in the void ratio (e) and the volumetric stress 

(/) for unloading-reloading (URL) is modeled as a straight line in log-linear space 

[Kaliakin, 1985]. This is shown as the jchne in Figure 1.3-1. Because of problems 

associated with I near zero in log space, a limiting value of the volumetric stress (/,) is 

given where the relationship is changed from log to linear. This is given as: 

Jg.j'-'.W. (1.3-1) 
dee K 

where     / = volumetric stress {a, + o2 + o3) (i.e., the first stress invariant) 

dee = elastic change in the void ratio 

/, = limiting value of/ 

K= slope of unloading - reloading line. 

The Macaulay brackets ( ( ) ) imply that (n) - n if n > 0 and (n) = 0 if n < 0. 
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This defines two separate mathematical regions: 

1) the region of log-linear relationship between the void ratio and the volumetric 

stress (I > I,), and 

2) the region of a linear-linear relationship (7 < I,). 

For this section, equations where / > /, are denoted as the "a" equations and I < I, are 

denoted as the "b" equations. The elastic void ratio differentials for the respective regions 

are defined as: 

dee=--dl (/>/,) (l-3-2a) 

dee=--dl (/</,) (L3-2b) 

The definition of specific volume (v) is defined as: 

v = l + e (1.3-3) 

Differentiating Equation 1.3-3 results in: 

dv = de (1-3-4) 

Equations 1.3-2 now can be written as the elastic increment in specific volume: 

dve=_ldI (l.3-5a) 
/ 

dv'=--dl (l-3-5b) 

where      dve= elastic change in specific volume. 
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The increment in volumetric strain can be expressed in terms of the specific volume 

for small strains as: 

doe=-— d-3-6) 

where     dBe = elastic change in volumetric strain 

vo = initial specific volume. 

Substituting the increments of specific volume (Equations 1.3-5) into Equation 1.3- 

6, the elastic increment of volumetric strain is given in terms of the volumetric stress 

increment: 

(1.3-7a) 

(1.3-7b) 

These relationships can be integrated from times tn to tn+1 to give the volumetric 

stress (/) in terms of the elastic volumetric strain (6e): 

I^=heß[6--K) d.3-8a) 

/B+,=j8/,(*:+.-*:)+'. <L3-8b) 

where     ß = ^- 
K 

1.4  Single Ellipse Bounding Function for Clays 

The Bounding Surface plasticity concept was developed for clays at the University 

of California at Davis (UCD) in the early 1980's [Dafalias and Herrmann, 1980a; Dafalias 

d6e 

Vc 

dl 
I 

dee = 
K 

dl 
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et. al. 1980b; Dafalias et. al., 1980c; Dafalias 1980d; Dafalias and Herrmann, 1980e; 

Dafalias et. al., 1981; Herrmann, et. al., 1982; DeNatale, et. al. 1983; Herrmann, et. al. 

1983a; Herrmann and Mish, 1983b; Herrmann, et. al. 1983c; Herrmann and Mish, 1983d; 

Herrmann and Mish, 1983e; Herrmann, et. al., 1985; Kaliakin, 1985; Shen, et. al., 1986; 

Dafalias and Herrmann, 1986; Herrmann, et. al., 1987]. A single ellipse model with 

associated plastic flow (Section 1.6) was developed for clays in the mid 1980's [Kaliakin, 

1985; Herrmann, et. al., 1985; Herrmann, et. al., 1987]. The model was validated using 

traditional soils tests and centrifuge tests conducted at UCD. 

The single ellipse bounding surface function is expressed in terms of stress 

invariants and is given as: 

F = P + (R-lf '1? -IJ + ^-^-l] (1.4-1) 
R° R 

where     F = bounding function 

I =b(I-IJ + Ic 

1= first stress invariant (<jn + <722 + <J33) 

K = ci0 

C = material constant defining the projection center location 

I0 = bound size (i.e., intersection of bound with volumetric axis) 

J =bJ 

J = second stress invariant = Jj SySy 

N~l + Nec-{l-Nec)sin(3a) 
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a = lode angle = {sin ' 
iS(s 

2   \J 

S = third stress invariant = y j s^s^s^ 

Ne = slope of critical state line in extension (7-7 space) 

Nc = slope of critical state line in compression (I-J space) 

R - a parameter defining the shape of the ellipsoid. 

The bounding surface for clays is shown in Figure 1.4-1 

1.5  Development of the Bounding Surface Hardening Relationship 

The form of the relationship for the normal consolidation line [Kaliakin, 1985] is 

similar to the elastic relationship (Equation 1.3-1) and is given as: 

(1.5-1) dl0 _    (I0-Ii) + Ii 

de X 

where     10 = bounding surface size 

e = void ratio 

X - slope of normal consolidation line. 

This is shown in Figure 1.3-1 as the A line. The change in the void ratio can be 

decomposed into an elastic and plastic portion: 

de = dee+dep (1.5-2) 

where     de? = plastic change in void ratio. 
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Combining Equation 1.5-1 with Equation 1.3-1 (note that Equation 1.3-1 is valid 

for I = I„) results in a relationship between the bounding surface size and the plastic void 

ratio and is: 

(1.5-3) dl0 _    {h-h) + h 
dep A-K 

In previous work [Kaliakin, 1985] the plastic void ratio is used as the internal 

variable. The relationship describing its evolution is based upon an associative flow rule 

[Kaliakin, 1985] and is given as: 

dep=-3v0y^ (1.5-4) 
0   dl 

where     vo = initial specific volume = (1 + en) 

I = volumetric image stress. 

Equation 1.2-1 can be rewritten in terms of volumetric stress and strain as: 

de> = ySr (1-5-5) 
dl 

Combining Equations 1.5-3, 1.5-4 and 1.5-5 results in an expression relating the 

plastic volumetric strains to the bounding surface size. This is given in differential form as: 

dl0=3v0
<^^-de" (1-5-6) 

A — K 

Once again, the Macaulay brackets indicate two possible integrations, where I > I, 

and / < I,. However, when finding exact solutions (i.e., given a change in I0 and 

calculating the plastic volumetric strains, see Appendix C), it was noted that when I0 < I, 

the magnitude of the tensile volumetric strains could not exceed a given value. This is a 

result of the mathematics and not an observed phenomena. Therefore, for this study the 

Macaulay brackets are eliminated in Equation 1.5-6 (this is consistent with the Closest 
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Point Projection application to the Cam-Clay model [Simo and Meschke, 1993]). (While 

this step may seem arbitrary or approximate, it must be remembered that the introduction of 

ll was itself quite arbitrary). The differential of the bounding surface is now defined as: 

dl0=310%dep (1.5-7) 

where     E, = ——. 
X-K 

Integrating Equation 1.5-7 between times tn and tn+1 results in an expression for the 

bound size in terms of the plastic volumetric strain: 

1.6  Plastic Modulus for Single Ellipse Bounding Function 

In classical plasticity the plastic modulus is determined for a stress point on the 

yield surface via the consistency condition (Equation 1.2-3). This is facilitated by the fact 

that the stress point is on the surface and the yield function derivatives can be defined 

directly by enforcing the consistency condition. In Bounding Surface plasticity the plastic 

modulus must be defined within the bounding surface and can not be directly obtained. 

The behavior of the modulus can be described by considering a line from the projection 

center to the bounding surface. The modulus is a function of the distance from the bound. 

It becomes infinite at the elastic nucleus (and within) and approaches the classical plastic 

modulus definition at the bounding surface. The general expression for the plastic modulus 

(üMon the bound, at the "image" stress point, is given by Equation 1.2-4 and can be 

expressed in terms of the internal variable I0 as: 

  3p 
Kp=-—h (1.6-1) 

dl0 
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The variable h is defined by the rate equation of the internal variable, (see Equation 

1.1-6). Substitute Equation 1.5-5 into 1.5-7 and noting the form of the rate equation for 

the internal variable (Equation 1.1-6), h is given as: 

h = -3I0£ 
dF_ 

d! 
(1-6-2) 

Combining Equations 1.6-1 and 1.6-2, the plastic modulus at the "image" stress 

can be expressed as: 

K„ 
^ dl dL 

(1.6-3) 

The plastic modulus (Kp) for points inside the bounding surface was developed for 

the single ellipse form of the Bounding Surface model for clays by [Kaliakin, 1985]. The 

modulus is a function of the plastic modulus at the image stress point (Kp) and the distance 

to the bound (b). It is defined as: 

Kp= Kp + % p^lz^+tl-z^lU^a + ügn^)^] 

+ ■ 
dl 

(*-l) 
(1.6-4) 

_ (b-(b-l)sp 

where     patm = atmospheric pressure 

JR 

NL 

m = positive material constant 

/z,(a) = 
2r] 

1 + 77 -(1- rj) sin(3a) 

77 = 
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K - ^i(f) = value of \ in triaxial compression 

he = fy(-f) = value of \ in triaxial extension 

n = p-direction component of unit outward normal in triax space 

h2 = shape hardening parameter for states near the volumetric axis 

5 = parameter defining the elastic nucleus ysp > lj. 

On the bounding surface (i.e., b = 1) the plastic modulus is the same as the image 

modulus (i.e., K = K ). As one moves toward the projection center (i.e., b -» ~) the 

value of the term in the Macaulay brackets (( }) goes through zero and then negative (if sp 

> 1). Recalling the convention for the Macaulay brackets, the plastic modulus becomes 

infinite as b approaches the projection center or the edge of elastic nucleus. The elastic 

nucleus is defined by sp and is given in terms of the distance to the bound by: 

b       =   Sp (1-6-5) uelastic i v ' 

where     belastic = defines the edge of the elastic nucleus. 

For stress points within the elastic nucleus, use of the Macaulay brackets assures that the 

plastic modulus remains at infinity. 

This form of the plastic modulus was defined to capture overconsolidated clay 

behavior and to give appropriate behavior near the critical state line. For further discussion 

on the development of this expression, the reader is directed to previous work on the single 

ellipse Bounding Surface model [Kaliakin, 1985]. 

1.7  Development of Rate Equation for Loading Surface 

The loading surface is the surface on which the stress point resides inside the 

bounding surface. The loading surface has not been explicitly defined in the bounding 
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surface literature but is required for any return method algorithm. The development of the 

rate equation for the loading surface begins with the definition of the image stress in 

invariant space: 

j = b(l-Ic) + Ic (1.7-1) 

where      Ic - C I() 

C - projection center constant 

b = measure of distance from the loading surface to the bounding 

surface. 

J=bJ (1.7-2) 

a=a (1-7-3) 

Differentiating the image stress invariants with respect to time yields: 

I = b{i-ic) + b(i-ic)+ic (1.7-4) 

J = b(J) + b(J) (1-7-5) 

a=ä (1-7-6) 

where      /c = C(/0). 

The plasticity parameter (Equation 1.2-4) can be expressed in terms of the 

invariants as: 

1  fdF -    dF i-    dF ^ J_ 
'     KAdI       dJ       da 

dF - dF ■ 1 dF : 
—=-I + ^=J + -—-a 
dl       dJ       b da 

(1.7-7) 
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Substituting Equations 1.7-4, 1.7-5 and 1.7-6 into the first part of Equation 1.7-7 

yields: 

Kpy = b 
OF dF 

M{!-'')+ujr 
dF ■    dF ■     1 dF . 
— I + — J + a 
dl       dJ       b da   j 

dF ■ 
+ (\-b)-^le     (1.7-8) 

The terms in the second parentheses (multiplied by b) is recognized to be the 

plasticity parameter times the hardening modulus (i.e., the second term of Equation 1.7-7) 

which simplifies Equation 1.7-8 to: 

*,7^§(/-/>§;)+7^+(i-»)§/c dl 
(1.7-9) 

Recall that the projection center was defined in Equation 1.7-1 as Ic = CI0. 

Combining Equations 1.5-5 and 1.5-7 (written in rate form) with Equation 1.7-1 results in 

the expression for the rate of the projection center parameter: 

/    =3yCv   ~^- — (1.7-10) 

Substituting Equation 1.7-10 into 1.7-9 the rate of the loading surface (b) is 

obtained as: 

KP-bK-3Cv0(l-b) 

b = y- 
X-K O'h 

v       cJ dl        dJ (1.7-11) 

1.8  Improved Invariant Form 

The model uses the associative flow rule in which the strain direction is given as the 

perpendicular to the bounding surface (i.e., the first derivative of the bounding function 

with respect to the image stress). Since the bounding function is given in terms of stress 



26 

invariants, this derivative is given via the application of the chain rule: 

dF     dF dl     dF dJ     dF da 
■ + —=-— + ■ 

dOy      dl doi}     dJ d<Jy     da dai} 

(1.8-1) 

The lode angle (a) was used for the third invariant in previous work on Bounding 

Surface plasticity [Herrmann, et. al., 1985; Kaliakin, 1985] and Cam-Clay [ABAQUS, 

1994] because of its easy visualization in the 7T-plane. The partial derivatives of the 

bounding function (F) with respect to the invariants can be expressed as: 

dl R " 
(1.8-2) 

dF 

dl 
2{R-\y 

J_ 
V2 (1.8-3) 

dF     dF dN 
— — = 3(/?-l)' 

da     dN da N 

(l-Nec)cos(3a) 

N. 
(1.8-4) 

as: 

The partial derivatives of the invariants with respect to the image stresses are given 

dl 

(1.8-5) 

dJ Sy 

dOy 2J 

da V3 " 1 

J2 
f                   35'        1 SikSkj       2    j2 Sij 
v          J    ) 

3 ^ij do. u 2Jcos(3a) 

where 
1< 
6 

a< — 
6 

(1.8-6) 

(1.8-7) 
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Numerical difficulties occur at the endpoints of the lode angle (i.e., a- ±f) 

because the term, cos(3a) = 0. The value of the derivatives associated with the lode angle 

at the endpoints are: 

— = 0 (1.8-8) 
da 

da     » (1.8-9) 
^ 

The problem lies in the fact that a is discontinuous at these endpoints. This can be 

resolved for the first derivative by realizing that the cosine term cancels out when Equations 

1.8-8 and 1.8-9 are multiplied together. Second derivative terms (as required by the 

Closest Point algorithm), however, do not have this obvious fix. Another approach to this 

problem is noting that a is not used directly in the functional but is used within 

trigonometric functions which are continuous. A new variable is defined as: 

// = sin(3a) (1.8-10) 

Equation 1.8-1 can now be written in terms of this new variable as: 

dF      dF dl      dF dl     dF d\l ■ + £- (1.8-11) 
dOy      dl dOy     dJ dGtj     dß dou 



The derivatives associated with the third invariant (Equations 1.8-4 and 1.8-7) can 

now be written as: 

28 

dfi N 
(1.8-12) 

djl  _ 43 
da, ~ 27 Jl 

3^      ' 
SikSkj       2   j2 SÜ K (1.8-13) 

This form eliminates the cos(3a) term in the first derivatives and thus avoids 

division by zero. It also has the added benefit of eliminating the cos(3a) term in the second 

derivatives (see Appendix A). 
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Figure 1.1-1. Plastic Stress-Strain Diagram. 

<yx A 

Figure 1.1-2. Yield Surface in Principal Stress Space. 
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Figure 1.2-1. Uniaxial Bounding Surface Plasticity. 
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Figure 1.2-2. Bounding Surface Concept. 
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Figure 1.3-1. Void Ratio-Volumetrie Stress Relationship. 

Figure 1.4-1. Single Ellipse Bounding Surface Model for Clays. 
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2. Closest Point Projection Method 

The Closest Point Projection method was introduced to computational plasticity by 

the late Professor Juan Simo of Stanford University in the early 1990's [Simo and Hughes, 

1990, Simo and Meschke, 1993]. The method was developed within the classical plasticity 

framework and uses the Newton-Raphson method in the implicit integration of the rate 

equations and the satisfaction of the consistency condition. As with any Newton-Raphson 

method, a guess in the "neighborhood" generally results in quadratic convergence. The 

method has proven to be extremely fast in J2 Flow models [Simo and Hughes, 1990]. 

In order to employ the Newton-Raphson method, the algorithm requires that the 

yield function be twice differentiable and the internal variable rate equations be 

differentiable. Creation of this local "Jacobian" requires additional calculations, but 

improves the convergence. The local "Jacobian" also provides the framework for 

developing the algorithmically consistent tangent moduli [Simo and Taylor, 1985] that 

improves global convergence. 

To remain consistent with Professor Simo's work, the differential form of the 

equations is used instead of the rate form (dl instead of/) throughout this section. 

Sections 2.1 and 2.2 lay out the framework for the stress point algorithm and the consistent 

moduli, respectively, for a simple elastic-plastic model. Sections 2.3 and 2.4 describe the 

stress point algorithm and the consistent moduli for a general plastic model with internal 

variables. Section 2.5 extends the general model using explicit-implicit integration. 

Finally, in Section 2.6, application is made of the Closest Point method to the Bounding 

Surface Clay model. 

2.1  Derivation of Closest Point Stress Point Algorithm (simple model) 

To lay out the framework for the Closest Point method, a simple elastic-perfectly- 

plastic model with an associative flow rule will be used. This will provide insight and 
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facilitate the application to more complex models such as the Bounding Surface Clay 

model. 

The yield function for the simple model is a function of the stresses only and is 

given as: 

/ = /(<r) = 0 (2.1-D 

where    /= yield function 

<y = stress vector. 

The associative flow rule assumes that upon plastic flow the strains flow in a 

direction perpendicular to the yield surface [Dafalias, 1990] which is described in stress 

space. Thus, the rate equations for the plastic strains are a function of the yield surface (see 

Equation 1.1-5) and are given as: 

ep=r^- (2-1-2) 
do- 

where     7= plasticity parameter 

— = vector of yield function derivatives. 
da 

The desired result of a constitutive algorithm is the stresses at the end of the step 

(<7n+;) given a set of strains (en+1). The stresses are a function of only the elastic strains for 

this simple model and are written as: 

^^C^C^-C) (2-1-3) 

where     a= vector of stresses (i.e., [ ax, oy, oz, T^, ...]
T
). 

Beside the stresses at time tn+!, the plastic strains are unknown. In order to 

determine these, the rate equations (Equations 2.1-2) are integrated between times tn and 
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tn+1 using a backwards Euler approximation. Backwards Euler was chosen because it 

involves the end point values (i.e., at tn+J) of the various terms (e.g., plasticity parameter, 

gradients, etc.). This facilitates a simple derivation of the Closest Point Projection method. 

The approximation for the plastic strains is given as: 

Fp    =£p+v r%^ (2.1-4) 

Note that jn+] will be used for clarity throughout this section instead of the more 

appropriate Af y|n+1. 

By adding and subtracting the plastic strains at the beginning of the step (ep
n) to the 

strain terms in the parenthesis of Equation 2.1-3 and substituting in the right hand side of 

Equation 2.1-4, the stress equations are given in terms of a "trial" stress and the unknown 

plasticity parameter. The stress equations are given as: 

an+1=^a'-7n+1cf|-l (2-1-5) 

where     a'rM = c(en+1 -£„'). 

Since the total strains at time tn+1 are given and the plastic strains at time tn are known from 

the previous calculation, the "trial" stresses are in terms of known quantities and can be 

viewed as an elastic prediction. The concept of the Closest Point Projection method is to 

return the stresses back to the surface via the "closest projection." This is shown in Figure 

2.1-1. 

Since the backwards Euler method needs terms evaluated at time tn+I, it requires 

iteration. The Closest Point Projection method incorporates Newton-Raphson iteration not 

only to solve the stress equations (Equation 2.1-3), but to enforce the consistency condition 
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directly. This is accomplished by first defining local residuals using the stress equations. 

The local residuals are defined as: 

K+^cjn+]-a'rM + rn+jC 0 (2.1-6) 

These residuals are differentiated at time tn+] (implying that values at time tn are 

constants) to give an infinitesimal increment of the residual. Note that the strains are 

known at times tn and tn+1 and therefore do not vary. Recall, also, that the yield equation in 

this simple model (Equation 2.1-1) is a function of stresses only, and the plasticity 

parameter is also a variable. The resulting differentiation is given as: 

dRn+l =don+l+dyn+]C 
r^2f\ 

+r„+1c 11 
da2 da. +i (2.1-7) 

/«+] 

The yield function (Equation 2.1-1) can also be differentiated at time tn+r By 

setting this equation to zero, a discrete form of the consistency condition (/ = 0) is 

established [Simo and Hughes, 1990]. This is equivalent to satisfying the consistency 

condition at a finite difference point using a backward difference formula for the first 

derivative. The yield function differential is given as: 

4T.+, = do„+]=0 (2.1-8) 

At this point the iteration counter k is introduced. Values at k = 1 are given as: 

<T<*> = a'rial (2.1-9) 

/(4)=/K,) 

Y%=0 

(2.1-10) 

(2.1-11) 
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(2.1-12) 

For elastic steps, the yield function (Equation 2.1-10) would be less than or equal 

to zero and the trial stress would be substituted as the new stress. If the yield function 

were greater than zero the Newton-Raphson iteration would be required to drive the yield 

function (Equation 2.1-10) and residuals (Equation 2.1-12) to zero. It is interesting to note 

that for the first iteration the local residuals are all zero except for the yield condition if) 

which is not satisfied. 

A Taylor series expansion is made on the residuals and yield condition (Equations 

2.1-12 and 2.1-10) at time tn+] and truncated at the linear term. This step amounts to a 

derivation of the Newton-Raphson nonlinear solution algorithm. Both approximations are 

set to zero: 

/£{+<fl£!=o (2-1-13) 

f%+4f£=0 (2.M4) 

To obtain accurate results, it is assumed that the step sizes are sufficiently small that 

the differentials can be approximated with finite increments (i.e., AR^ ~ dR^] and 

4/~„(+i ~ 4/n+i)- This is required to assure accuracy of the finite difference approximations. 

In addition, care must be taken in assuring that the global step sizes (and the step sizes used 

in the local Newton-Raphson iteration) are small enough so that there is convergence at the 

local level. This is often accomplished by including substepping at the local level. 

Equations 2.1-7 and 2.1-8 are substituted into Equations 2.1-13 and 2.1-14, 

respectively, and Equation 2.1-13 is multiplied by C'' (assuming it exists). The resulting 
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equations are given in incremental form as: 

C-,/?(*) +~(k) Acj(k) +AY(k) (2.1-15) 

where J«+l 
1   _!_„(*) 

+ 1 c-'+r: 
-1-1 

f#Y» (*) (2.1-16) 

Note that the H matrix is shown as an inverse matrix for clarity purposes in this section. 

However, in the coding of the algorithm, standard matrix factorization and substitution is 

usually used. 

Equation 2.1-15 can be rewritten to solve for the unknown increment in stresses 

given an increment in the plasticity parameter. The stress increments are given as: 

A<, = Jn+1 C  Kn+l+Ayn+l 
\dGjn+l 

(2.1-17) 

The increment in stresses of Equation 2.1-17 can be substituted into Equation 

2.1-16 yielding: 

Jn 
■(*) 

+ 1 
V<?cryn+1 

C    ^Si+l+A7B+i = 0 (2.1-18) 
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Finally, Equation 2.1-18 can be rewritten to solve for the increment in the plasticity 

parameter as: 

(*) 
J n + 

f df\W 

ATi?, dOJn 

:(*) -1   £>(« 
n + 1   ^       *\i + l 

■1 

'""'/I+l 

(2.1-19) 

da do)n+ 

The Closest Point method begins by calculating the "trial" elastic stress (Equations 

2.1-5 and 2.1-9). This is tantamount to the first Newton-Raphson iteration starting with an 

initial guess of an elastic step (i.e., Aa(
n°,\ = AoelaUic). If the yield function is greater than 

zero, this stress point is taken as the first iterate. The yield function, derivatives and 

residuals are then calculated at this stress point. These values are then inserted into 

Equation (2.1-19) and the increment in the plasticity parameter is determined. The 

plasticity parameter increment is inserted into Equation 2.1-17 to solve for the stress 

increments. The unknown plasticity parameter and stresses are then updated via: 

(*) 7^ = 7^, +A7: ,(*) (2.1-20) 

On+1     - On+1 + AO„+1 
(2.1-21) 

The new stress point and plasticity parameter are used for the next iteration with the 

process continuing until the yield function and stress residuals are within some tolerance of 

zero. Recall (from Equation 2.1-4) that the plasticity parameter (yn+/) shown here is, in 

fact, At y\    . The Closest Point stress point algorithm is described in Box 2.1-1 and the 

behavior during iteration is shown Figure 2.1-2. 



Box 2.1-1. Fully Implicit Closest Point Stress Point Algorithm (simple model). 
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1. Given: sn+i,£
p

n,C 

2. Initialize: k = l,   7^=0,   eC=< 

3. Calculate elastic prediction: atriaI = C (e„+1 -e
p

n) 

4. Calculate yield function and local residuals: 

f% =/(<*%) 
RW   _      (*)  _      trial (*)   c 

^■n+X  — Un + 1       U ^ / n + 1   ^ 

5. Test for convergence: IF (/„<*> < TOLERf   AND   \\R{
n
k

+\\\ < TOLERR) 

6. Compute the derivatives and assemble matrices: 

EXIT 

dfT _#(<#',) 
-'n+l n+1 C~'+7 

7.   Obtain increment in plasticity parameter: 

-i 

(*) f 
(*) _ Ay£i = 

,^A+ 

-W    ^-I   r>W 
"n+1   U       *Vl-l 

( Zf\ \{k) 

n + 1 

8.   Obtain increment in stresses: 

AcC=' -n+1 
-1 Z>(*) U) CT'^+Ay^ 

r(*+D   _  ,r(*) r(*) 9. Update:   y^ = y£ + Ay£lf   <r£" = CJ- + ACT- 

10. Set:       it <-fc + i, Go to step 4 
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2.2  Derivation of Consistent Tangent Moduli (simple model) 

When the Newton-Raphson algorithm is used to solve the global nonlinear 

problem, a global Jacobian matrix is required. This global Jacobian matrix is an assembly 

of element Jacobian matrices which, in turn, are composed of Jacobian matrices 

constructed at the quadrature points. The accurate construction of the Jacobian matrix at the 

quadrature point requires a matrix of derivatives of the stress component relative to the 

assumed strain increments. This matrix is given the name "consistent tangent stiffness 

matrix" [Simo and Taylor, 1985] and must be supplied by the material routine. Recall, 

however, that an "exact" Jacobian is not necessarily required for convergence, although it 

generally improves the rate of convergence. 

Derivation of the consistent tangent moduli will follow a framework similar to the 

Closest Point stress point algorithm. For eventual comparison to the classical continuum 

developed moduli, indicial notation is introduced in this section. The stress equations 

(Equation 2.1-5) are given in indicial notation as: 

-.trial        ., /-» 
ijkl 

(2.2-1) 

where     of = Cm (e^ - c£). 

As with the stress point algorithm, the stress equations are differentiated at time 

t   ,. However, since the tangent moduli 
n+J 7 *-^ 

rdo^ 

v "£u y„+1 

are the variation in stresses given a 

variation in strains, the strain at time tn+] is not fixed. The differentiated stress equations 

can now be given as: 

dau^ =cukid£ki.„-drn+i c. ijkl 
\dCJk,Jn+l 

Yn+l   ^ij ijkl 
d2f 

da„da, 
da^  (2.2-2) 

V U    kluu mn Jn+\ 



Both sides are multiplied by C'' and rearranged to solve for the increment in 

stresses. The stress increments are given in terms of the increment in strains and plasticity 

parameter and are: 
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dc *..,='' "ijkl 
d£ku, ~dr, «+i (2.2-3) 

where     E ijkl QL+r ijkl   '   I n+\ 
d2f 

teufonnj^y 

The increment in stresses is inserted into the discrete consistency condition 

(Equation 2.1-8). The resulting expression for the increment in the plasticity parameter 

(dyn+]) can now be given in terms of the increment in strains. This is given as: 

S      de mnop op„+i 

\d(Jab)n+l 

■'abed 
Kd(JcdJn+l 

(2.2-4) 

Equation 2.2-4 is substituted into Equation 2.2-3 which now puts the stress 

increments in terms of the strain increments: 

do 
y„+i -ijkl 

% 

de. 
\d(JmnJn+{ 

S „ de mnop opn+l 

' df^ 

\do«bjn+x 

^abed 
JL 

\d°cdJn+l 

Kd°kiJn+x 

(2.2-5) 

The consistent tangent moduli are determined by differentiating the stress 



increments by the strain increments at time fn+/. The moduli are given as: 
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fdat ^ 
 h 

ijmn 
JL 

""opkl 

"ijkl 

''abed 

(2.2-6) 

where     Eijkl *-ijkl + Yn+l 
d2f 

do\,do'„ i   , 

The tangent moduli for the associative flow rule and elastic-perfectly-plastic material 

are derived using the classical continuum approach [Dafalias, 1990] independent of any 

particular stress point algorithm. The resulting moduli are given as: 

C„ 

^ijkl       ^ijkl 

c opkl 

\dVab) 
c. abed 

\dGcdJ 

(2.2-7) 

where     Dikl = tangent moduli derived from continuum plasticity. 

The consistent tangent moduli developed by the Closest Point algorithm (Equation 

2.2-6) results in terms that are consistent with the method used to integrate the stress point 

algorithm. Upon comparing the moduli it is seen that the difference between the two 

approaches for this simple model lies in the use of the S matrix instead of the elastic 

constants. The E matrix depends not only upon the elastic moduli but also the plasticity 

parameter and the second derivative terms of the yield function. Earlier literature has 

shown that consistent tangent moduli usually result in faster global convergence [Simo and 

Taylor, 1985] because they create an exact global Jacobian (unless other approximations 

are made). Reduction in global calculations can result in significant cost savings if the 

increased local calculations are not overwhelming. 
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2.3  Derivation of Closest Point Algorithm (general model) 

Classical plasticity includes internal variables that describe the changes in shape, 

size and location of the yield surface as plastic straining occurs. The general formulation of 

the Closest Point algorithm was developed with the internal variables expressed in rate 

form [Simo and Hughes, 1990]. The yield function for the general formulation is now 

described in terms of the stresses and internal variables and is given as: 

/ = /(<7,*) = 0 (2.3-1) 

where     q - internal variables. 

The rate equations for the plastic strains with non-associative flow and internal 

variables are given in a general form as: 

ep=yN (2.3-2) 

q = Y h (2.3-3) 

where     N = N(a, q) = direction of plastic strains 

h = h(a, q) = direction of internal variables. 

The plastic strain and internal variable directions are shown as functions of both stresses 

and internal variables, although they can be a function of just one of these characteristics. 
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The rate equations for both the strains and internal variables are approximated 

between times t and t J., using a backwards Euler scheme and are given as: 

pP      =FP+y        AT 
+1 (2.3-4) 

<?„+, =qn
+rn+A+ (2.3-5) 

where     Nn+1 = N(cB+I, qn+I) 

hn+, = h((Jn+„ qn+1)- 

As in the stress point algorithm (Section 2.1), the plastic strains at time tn {ep
n) are 

added and subtracted in the stress equation (Equation 2.1-3) and use is made of Equation 

2.3-4. The resulting equation for stress is in terms of the "trial" stress (elastic prediction) 

and is given as: 

(2.3-6) 

where     &M = C(en+1 -£„'). 

The set of nonlinear equations to be solved consists of the stress equations 

(Equation 2.3-6) and the internal variable equations (Equation 2.3-5). The local residual 

vector for these equations is defined as: 

^„+i - 
n+l <7tr'a'+r^cNn+l 

Hn+\-<ln-yn+\h> "n+l 

= 0 (2.3-7) 

The local residuals are differentiated at time tn+1 to give the local Jacobian matrix. 

Recall that the strain rates and internal variable rates can be functions of both stress and 

internal variables. Again, since the strains are given for the stress point algorithm they are 
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fixed at time t ,. The differentiated residuals are given as: 

dR n+\ 

don+,+dyn+]CNn+]+yn+]C 

dh 

fdN^ 

dqn+1-dyn+1hn+]-rn. :+l da 
d(7n+]-rn+] 

dan+:+yn+lC 

Uh^ 

n+l V^A+, 
d<ln+\ 

d(ln +1 

0        (2.3-8) 

The yield function is differentiated at time tn+I and now includes the contributions of 

both stress and internal variables. The discrete consistency condition is now given as: 

dfn+l = 
\daj 

don+, + 
n+\ 

dqn+,=0 (2.3-9) 

To facilitate the general algorithm development, a number of matrices and vectors 

are defined: 

G = 
C    0' 

0    -I 

a 
Z = 

v/ = 
df] ~dN    dN~ 

da 
df 

F = do     dq 
dh     dh 

I = 

dq\ da     dq 

h 

1    0 

0    1 (2.3-10) 

Equations 2.3-8 and 2.3-9 can now be written in matrix form as: 

(k)   n 7(k)    ,..(k)   r, v(k)    »y(«   _, dZZ + « G ZZ + y- G Y% dL™ = 0 (2.3-11) 

va dzz=o (2.3-12) 

Substituting Equations 2.3-11 and 2.3-12 into the linear portion of the Taylor series 

expansion and assuming a finite increment for the differentials (Equations 2.1-15 and 
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2.1-16) results in: 

/£>+<»+Ay™ GZik
+\+r^ GY% AZ<» =0 (2.3-13) 

/^+V^JA2£>=0 (2-3-14) 

Equation 2.3-13 can be solved for the increment in stresses and internal variables 

yielding: 

<« = -Ei» [G-'/^i + Ay?+> Z<« ] (2.3-15) 

where     Z^+y™   Y^. 

As noted in Section 2.1, the inverse of the E matrix is shown for clarity, however, 

standard matrix factorization and substitution would generally be used in the algorithm. 

Finally, the increment in the plasticity parameter is determined by substituting Equation 

2.3-15 into Equation 2.3-14 and is given as: 

AyW   -h±l V/« + l  - U       "n + l (2.3-16) 
^/n + 1  _ Vf(k)  -   y(k) 

yJn+\  ^ ^n + \ 

As before, the Closest Point algorithm begins with the calculation of the "trial" 

stresses (Equation 2.3-6). If the yield condition is positive, the derivatives and residuals 

are calculated at this stress point. The increment in the plasticity parameter (Equation 2.3- 

16) is evaluated, then the increment in stresses and internal variables are calculated from 

Equation 2.3-15. The plasticity parameter, stresses and internal variables are then updated 

via: 

7^7^+Ay^ (2.3-17) 

Z^X&'+AZ™ (2.3-18) 
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The new stress point, internal variables and plasticity parameter are used for the 

next iteration with the process continuing until the yield function and the local residuals are 

within some tolerance of zero. The general stress point algorithm is described in Box 2.3-1 

and shown graphically in Figure 2.3-1. 

Box 2.3-1. Fully Implicit Closest Point Algorithm with Internal Variables 

1. Given: en+1,e^,C 

2. Initialize: k = 1,   7^=0,   e£=ep
n.   q^=qn 

3. Calculate elastic prediction: alrial =C(e„+1 -e
p

n) 

4. Calculate yield function and local residuals: 

/ = /(M K +1 

o^-<y!rial + yn+lCNn+x 

5. Test for convergence: IF (/„<*> < TOLERf   AND   \\R(
n
k

+\\\ < TOLERR)      EXIT 

6. Compute derivatives and assemble matrices: 

-w =\G'x+r{k)  Y(k)Xl 

7. Obtain increment in plasticity parameter: 

f(*) _ ww ~{k) r~l n(k) 
\v(k)   _  Jn+l        V-/n+l  ^n+l  "      ■fSi + I 

V«+l   "n+l   ^rt+l 

8. Obtain increment in stresses and internal variables: 

9. Update:   y™ = y£> + A^.   E™ = Z«> + AS™ 

10. Set:       k <- k + 1, Go to step 4 



2.4  Derivation of Consistent Tangent Moduli (general model) 
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Derivation of the consistent tangent moduli is somewhat more complicated because 

the internal variables are now included. The stress and internal variable approximations 

(Equations 2.3-6 and 2.3-5) are given as: 

<r„+i=<7     -7-iCAU (2.4-1) 

<7„+l   = tffl+7n+A+ 
(2.4-2) 

where     aM = C{en+l -el). 

Equations 2.4-1 and 2.4-2 are differentiated at time tn+I. Recall that the tangent 

moduli are variations in stress with variations in strain and therefore the strains at time tn+I 

are not fixed. The stress and internal variable differentials are now written as: 

dan+l = C den+l - dyn+l C Nn+l - yn+l C —     dan+1 - yn+l C dqn +i (2.4-3) 

dqn+l=dyn^ hn+l-yn+i 
( dh^ 

do 
d(Jn+1-yn +i 

\oojn+l 

dqt n+l (2.4-4) 

Solving Equations 2.4-3 and 2.4-4 for the increments in stresses and internal 

variables and writing in matrix form results in: 

dLn+l=-En+i[dX + dyZ]n+l (2.4-5) 

where      X = 

"0" 
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Equation 2.4-5 can be substituted into the discrete consistency condition (Equation 

2.3-12) and solved for the increment in the plasticity parameter as: 

dyn+l = 
'Jrtl  an+l  ^n+1 

V/n + 1  "n+l   Ai+1 

(2.4-6) 

Substituting the plasticity parameter (Equation 2.4-6) into Equation 2.4-5 results in 

an expression for the increments in stress and internal variables in terms of strains. 

Differentiating this expression with respect to strains at time tn+1 provides the 

algorithmically consistent tangent moduli for the general model: 

(—) 
\ de )n+x 

-u 

hi. 
Y/n+l  Ai + 1  ["ll       "nJn + i 

n+1 

Y/n+l "n+i   Aj 

(2.4-7) 
+i 

where  Sn+1 = 
C~l+Yn+i Yn+l 

^ 
~\-l 

Yn+l (—1 
\do)n+i 

i+r„ 

^ A+. 

d(i)n 

-11 

:21 

J12 

L22. 

Since the tangent moduli describe how the stress increment changes in relation to 

the strain increment, the E matrix is partitioned (because it contains terms for both the 

stresses and internal variables). It is important to note that the tangent moduli are generally 

not symmetric since S12 and S21 are generally not equal. Because of the general lack of 

symmetry, the entire matrix needs to be available and nonsymmetric solution methods are 

required at the stress point algorithm level. It is worth noting that most "real world" 

problems (e.g., large-deformations, slide-surfaces, etc.) are nonsymmetric even if the 

constitutive relations are symmetric. 

The unique case for symmetry comes when considering associative flow (for 

strains) and what is coined as "associative hardening" (for internal variables). These are 



given respectively as: 

da dq 
(2.4-8) 

It must be noted that this symmetry is only possible when the elastic behavior is derivable 

from an elastic potential so that the C matrix is symmetric. This condition, in conjunction 

with Equation 2.4-8, results in a symmetric E matrix, but introduces second derivatives of 

both the yield function and the internal variable rate equations. The symmetric S matrix is 
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given as: 

rc + l 

c-l+yn+ 
^ 

V / n + \ 
f     12   r    \ 

Yn + 1 

/ n + n + 1 dqdc 
i+y„+ 

d2f 

-H 

Jn+\ .*?L 

(2.4-9) 

Substituting this matrix into the tangent moduli (Equation 2.4-7) results in 

symmetric tangent moduli. Most material models, however, rarely include this "associative 

hardening" and often, such as the case of the soil model considered here, do not have a 

symmetric elastic matrix (C). 

The tangent moduli for the associative flow rule and elastic-perfectly -plastic 

material using the classical continuum approach [Dafalias, 1990] is given as: 

( 3f\ 
C #V# 

D = C- 
\doj 

f 3f\ 

\d(Jj 
C 

Kp + 
\Baj 

C 

(2.4-10) 

f 2c\ 
where      K„ = 

Kdqj 
h. 

The differences between Equations 2.4-7 and 2.4-10 for the more general model is 

not quite as simple as was the case in Section 2.2. The algorithmically consistent moduli 



51 

include additional derivatives from both the strain and internal variable rate equations. In 

the continuum approach, however, the internal variables enter into the moduli only through 

the hardening modulus (K) in the denominator; whereas in the consistent moduli, they 

appear in both the numerator and the denominator through the E matrix and the Z vector. 

An approach for creating symmetric tangent moduli is given in the following 

section. 

2.5  Derivation of Closest Point Algorithm (implicit-explicit model) 

An alternate formulation of the Closest Point algorithm is developed similar to the 

general model, but involves treating the internal variable rates in an explicit fashion. The 

rate equations for the plastic strains are approximated between times tn to tn+] as before 

using a backward Euler form: 

FP   -FP+V    TV (2.5-1) 

where     Nn+! = N(on+„ qn+1). 

The internal variable rates, however, are approximated with the plasticity parameter 

evaluated at time tn+J but the direction evaluated at time tn. This is given as: 

?»+i=«„+7n+A (2-5-2) 

where     hn = h(on, qj. 

The local residual vector is defined as: 

K+i 0 (2.5-3) 
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The local residual is differentiated at time tn+1. Recall that the internal variable rates 

are evaluated at time t and, therefore, have no contribution. The differentiated residuals 

are given as: 

dRn+, 
d(Jn+]+dyn+]CN^+rn+]C 

dqn+i-drn+A 

dGn+:+rn+lc 
V d1 Jn+l 

dqn. = 0       (2.5-4) 

Equation 2.5-4 is solved for the increment in stresses and internal variables 

(Equation 2.3-15) and substituted into the discrete consistency condition (Equation 2.3-9). 

The increment in stresses, internal variables and the plasticity parameter are given as: 

(2.5-5) 

f (*) _ Vf (*) ■=■(*)   /7-1  /?(*) 
A v(i) Jn + I        Vn+l   ^n + 1   *-*      ■*>+! (2.5-6) 

Y7fw  ~ w    7W 
VJn+l   "n + 1   ^rt+1 

where     E = [G ' + 7  7] 

Y = 

The y matrix with all the zeros is shown for discussion purposes. In the actual algorithm, 

only the nonzero submatix would be stored and the number of actual calculations would be 

reduced accordingly. 

The consistent tangent moduli are obtained as in Section 2.4. Differentiating this 

~dN 
0 

da 
_ 0 0_ 
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expression with respect to strains provides the consistent tangent moduli: 

'do} 
-      AJ 
—'n+l   Jvn+l 

Kda) "n+l 
n+l 

Jn+1 

—       hi 
"n+l   iv«+l 

(2.5-7) 

where     E = c-]+rn +i 

Symmetric tangent moduli are obtained when both the strain rate functions and the 

elastic moduli are symmetric i.e., associative flow, N = 
d<J j 

Because the internal 

variables are evaluated at time tn, "associative hardening" is not required for symmetry. 

Comparing these moduli to the continuum moduli provides an interesting insight. The 

continuum moduli for non-associative flow are defined as: 

CN 
D=C- 

\doj 
C 

\doj 

(2.5-8) 

C N + K„ 

f^f\ 
where     K„ =- it 

ydqj 
h. 

The consistent moduli appear similar to the continuum derived moduli (Equation 

2.5-8) except for the second derivative terms, which are included with the elastic terms of 

the consistent moduli. The contribution of the internal variables now appears in the 

denominator for both methods. The difference is that the hardening modulus (Kp) is 

defined at time tn+1 for the continuum moduli and at time tn for the implicit-explicit 

consistent moduli. 

An additional modification can be made by updating the directions that are evaluated 
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at time tn by directions calculated using the previous iterate as: 

K=h(or\qir) (2-5-10) 

2.6  Application of the Closest Point Method for Bounding Surface 

Plasticity 

The Closest Point method was developed in the previous sections for typical 

plasticity models that are elastic within the yield surface. The Bounding Surface Plasticity 

model, however, uses the surface not as a yield surface, but as a bound. The complication 

in Bounding Surface Plasticity is that yielding can occur within the bound. With a clever 

choice of internal variables the model can be set up to resemble a classical yield model. 

This section will describe the establishment of the functions and their derivatives for the 

Bounding Surface Clay model. 

The approach used for this development is to separate the volumetric and deviatoric 

components of the stress and strain relationships similar to the Cam-Clay model [Meschke 

and Simo, 1994]. This allows for developing the relationship between the volumetric 

stress (7) and the Bounding Surface size (70), which will reduce the number of nonlinear 

equations. The nonlinear elastic volumetric relationship is described in Section 1.3. 

Because of the Macaulay brackets in Equation 1.3-1, there are two elastic regions 

delineated by the transition volumetric stress (7,). In order to remain consistent with 

Section 1.3, the equations in this section where 7 > 7, are again denoted as the (a) equations, 

and the equations where 7 < 7; are again denoted as the (b) equations. For this section, it is 

assumed that the steps that cross the transition volumetric stress are sufficiently small that 

the elastic relationships for each region will provide an adequate approximation for the step. 

Separate equations for steps crossing the transition stress are developed later in Section 
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3.2. Rewriting the differential relationships of the volumetric strain and stress (Equation 

1.3-7) in terms of the total and plastic strains yields: 

^+I = 4JK+,-C) (2.6-la) 

din+l = i^(den+l-ddi,) (2.6-ib) 

As described in the previous sections, to formulate the initial "trial" stress to start 

the Newton-Raphson iteration, an elastic prediction is made assuming no plasticity. During 

the plastic correction, the total volumetric strain is held constant. This results in the change 

in volumetric stress, during the plastic correction, being written in terms of only the plastic 

volumetric strain. This is given as: 

dIn+1   =    ~Kn+\   d6n + \ (2.6-2) 

where     Kn+l=-ßln+l (/>/,) 

Kn+l=-ßlt (KI,). 

Because the total volumetric strain increment is fixed and applied in the first iteration, the 

correction which involves the developing plastic volumetric strain is negative. It must be 

noted that during the plastic iteration some plastic volumetric strain will be created and thus 

change the elastic prediction in the next iteration (see Box 2.6-1). 

The relationship for the internal variable (70) of the Bounding Surface model is 

developed in Section 1.5. The differential relationship is given by Equation 1.5-7 and can 

be written at time tn+J as: 

Where      Hn+l(l0) = 3I^J- 



56 

Note that during the plastic iteration both the volumetric stress and Bounding 

Surface size are related to the plastic volumetric strain (Equations 2.6-2 and 2.6-3). 

Therefore, the differential in the Bounding Surface size can be written in terms of the 

differential in the volumetric stress during the plastic iteration as: 

dl     =-^dIn+] (2.6-4) 
°n+\ y n + i 

Än+1 

The plastic strain rates for the Bounding Surface model are defined in terms of the 

plasticity parameter and directions given by the "image" stresses (Equation 1.2-2). 

Rewriting these rates in terms of volumetric and deviatoric strains gives: 

ep=r^ (2.6-5) 
dl 

e"=r— (2-6-6) 
d$ 

where     ep= plastic deviatoric strain tensor 

s = b s = deviatoric "image" stress tensor. 

The Bounding Surface function (F) used for this study is the single ellipse model 

[Kaliakin, 1985; Herrmann, et. al., 1985; Herrmann, et. al., 1987] as described in Section 

1.4 (Equation 1.4-1). 

As in the previous sections, the increments are approximated between times tn and 

tn+1 with the backward Euler approximation, which results in: 

f)p   —Bp+y 
°n+\ °n   ^ /n+1 (2.6-7) 

en+\   ~ en   "*" 7'n+1 
(dF\ 
— (2.6-8) 

vc« A+i 
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Recall that the notation yn+] will be used instead of the more appropriate At y\n+x for clarity. 

The deviatoric stress rates are defined in terms of the deviatoric strain rates and the 

shear modulus (G) at time tn+] and are given as: 

v     =-2G    pp (2.6-9) 

The rate equation for the loading surface (b) was developed in Section 1.7. For this 

formulation of the Closest Point algorithm, the variable b will be treated as an additional 

internal variable. From Equation 1.7-11, a backward Euler approximation yields: 

bn+X   =K+Yn+l8n* (2.6-10) 

where 6n+ 

KP-bKp-3Cv0(\-b) 
X-K 

2\ 

fr      r\dF       TdF 

' n+\ 

The local residuals for the nonlinear equations are defined using the approximations 

of the plastic deviatoric strains (e), the plastic volumetric strain (0) and the loading surface 

(b). Rewriting Equations 2.6-7, 2.6-8 and 2.6-10 gives: 

R •n+l  — en+\       en       7 n+\ 
(HL) (2.6-1 la) 

X+1 = 0„'+1-0„'-7„+1 

dF (2.6-1 lb) 

^V+l — ®n+\       "n       7n+\ Sn + \ (2.6-1lc) 

where     R = residual equations for the six deviatoric strain expressions 

7R - residual equation for the volumetric strain expression 

8R - residual equation for the loading surface (b) expression. 
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Since the internal variable for the Bounding Surface size (I0) is expressed as a function of 

the plastic volumetric strain (Equation 2.6-3), it will be incorporated later in this section and 

will not be treated as a separate residual. 

As in the general Closest Point framework, the residuals are differentiated at time 

tn+J, noting that F is a function of the stresses / and s and the internal variables I0 and b. 

The differentials of the residuals are given as: 

dRn+l=dep
n+s-Yn+] 

v /ml 

f   32 r- \ 

'In + 1 

f IF} 
\dsdbj __, v y n+l 

d2F 
"Aj+1       Yn+] 

f d2F^ 
dl„ 

dK+l ~ d7n + l ds vösyn+i 

(2.6-12a) 

7dR^ = n+l 

rd2F^ 

(d2F^ 

Y n+\ dldb 

dlds 

db 

f ->2T?\ 

Jn+l 

/n+l 

n+l   _ "7c+l 

^n+l-7„+l 

(—) 
v dl Jn+] 

d2F 

dldl 
^n+l-7n+ 

f d2F^ 

J n+\ V ° /n + l 

dl. 
",+i 

(2.6-12b) 

*dRn+l =dbn+l-Yn+l 

rdg^ 

r& 
dsn+]-Yn 

(dg-\ 

Y n+l 
db 

v<^y„+i 

<#>„+, - dYn+, gn+] 

+i 
\& Jn+\ 

dIn+]~Y n+l dl„ 

\ODJn+l 

(2.6-12c) 

The differentials of the plastic volumetric and deviatoric strains (i.e., dep
+l,dOp

+l) 

can be expressed in terms of stresses by substituting Equation 2.6-2 and the differential 

form of Equation 2.6-9 into Equation 2.6-12. The internal variable I0 is incorporated by 

substituting Equation 2.6-4 into Equation 2.6-12. The substitutions result in equations that 



are expressed entirely in terms of stresses and internal variables and are given as: 
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dR n+l 

2 F A 
l6;c6 + 7 

d2F 

2G       dsds 

( n 
dsn+\-Yn+\ 

Jn + \ 

dlF     H d2F 2rr  \ 

dldl    K dsdl. 
dl. n+l 

" /n + l 

■Yn 

rd2F\ 
+1 

dsdb 
dbn + l ~ d7n+l 

\u*uu Jn + l 

(2.6-13a) 

'dR n+i Yn+ 

rd2F^ 

dlds 

Yn+ 

^d2F^ 

dsn+]~ij + Y 
(d2F    H d2F^ 

dldl    K dldl 
dl, n+l 

o J n+l 

dldb 
dbn+l-dyn+1 

\U1UU Jn+\ 

(2.6-13b) 

dRn+l=-yn+i 

+ 

\dsJn 

dg 

<kn+\-Yn +1 

%_Hdg^ 
dl     K dl 

dl n+l 

o /n+l 

\        dbJn+] 

(2.6-13c) 

The Bounding Surface function (F) is differentiated noting that it is a function of s, 

I, I0 and b. This differentiation results in the discrete consistency condition which is given 

as: 

dF 
fdF} 

yds Jn+\ 
^n+I + 

V dl yn+1 
^+, + dlo^  + 

v*y„+i 
«».♦, = o (2.6-14) 

Recalling the relationship between / and I0 (Equation 2.6-4). Equation 2.6-14 can 

be rewritten as: 

dF = 
ds)n+ 

<*v+i + 

rdF_H_dF^ 

dl     K dl. 
dln+i + 

o /n+l 
\db)n+ 

dK+] = o (2.6-15) 



The residual differentials and discrete consistency condition can be written in matrix 

form as: 
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dRn+i=A;lt dZn+l-dyn+1Zn4 (2.6-16) 

VF« d^+\ = 0 (2.6-17) 

where     Xn+1 =[s    I   Bfn+l 

n+l 

dF    dF 

~dJ     dl    8 
n + \ 

VFW - 
dF 

ds 

fd^_H_dF^ 

dl     KdIoJ 

dF 

db 

(*) 

Jn+1 

^K+i - 

2G 

7 

■7 
^d2F^ 

dsds 
rd2F^ 

7 

dlds 

dg 

yds j 

f  D2 

7 
d2F     H d2F 

dsdl    K dsdl, 

K 

( 32 

■7 
d2F    H dlF 

o J 
2r \ 

-7 

dldl    Kdldl, 

dl 

o J 

Kdl. »J 

7 

rd2F^ 

^dsdbj 
f d2F^ 

1-7 

ydldbj 

\dbj 
n+\ 

The Jacobian matrix (A) can be simplified by noting that the second derivatives 

involving orthogonal directions (i.e., J and s or I0 and s) are zero. The matrix is reduced 

to: 

Ai+7  — 

^2r\ 

2G 
■7 

d2F 

dsds 

7 

0 

yds J 

0 

r D2 
 7 
K 

-7 

d2F    H d2F 2r \ 

dldl    K dldl. 

dg    H dg 
o) 

dl     K dl, oj 

7 

7 

^d2F^ 

ydsdbj 

1-7 

ydldbj 

Kdbj 
«+i(2.6-18) 
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The second derivatives of the Bounding Surface function (F) are derived in 

Appendix A. Because of the complex form of the b rate equation (Equation 2.6-10), the 

derivatives of g are approximated with finite difference formulas. 

As in the previous sections, both the residuals and consistency condition are 

linearized (i.e., Taylor series expansion to the linear term) and set to zero. The assumption 

is made that step sizes are sufficiently small so that the differentials can be approximated 

with finite increments. The resulting equations, including an iteration counter (k), are 

given as: 

iC+AZe = R(
n

k!1+(A-f+i AJft + Ay*!, Z«, = 0 (2.6-19) 

F^ + VF^AJ^O (2-6-20) 

Equation 2.6-19 is rearranged to solve for the unknown increments in s, I and b, 

and is given as: 

AI^-A^ftf + AyZf, (2.6-21) 

Equation 2.6-21 is substituted into Equation 2.6-20 and solved for the increment in 

the plasticity parameter (Af), resulting in: 

zrW _\7FW  A(k)  J?w 

7n+l ~        Y7F<«   AM 7<*> l ^ 

Once the increment in the plasticity parameter is obtained, the increments in the 

stresses (s and /) and internal variables (b) are found with Equation 2.6-21. The internal 

variable (I0) representing the Bounding Surface size is indirectly included via the plastic 

volumetric strain (Equation 2.6-3). The increments in plastic volumetric and deviatoric 
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strains are calculated using Equations 2.6-2 and 2.6-9 and are given as: 

Aep 

A6P 

w 

Jn + l 
2G 

2_ 
A" 

(k) 

n + \ 

As 

AI 

(k) 

n + l 

(2.6-23) 

where     1 = [l    1   1   1   1   l]. 

The plastic strains and internal variable (b) are then updated during the iteration by: 

(2.6-24a) 

„U»D „n"1 

e.  =C+Aö;+1 
(2.6-24b) 

w C;"=^+AC (2.6-24c) 

The elastic "trial" stress is calculated with the plastic strains initially set to the values 

at the end of the last global step. The values of / and I0 are calculated with Equations 1.3-8 

and 1.5-8, respectively. The deviatoric stress is) is calculated at time tnJtl by: 

Sn+\  ~~ 2^,1+1 (e«+l       en+\) 
(2.6-25) 

The Bounding Surface function (F) is evaluated with the "trial" stresses and the internal 

variable (b) initialized with the value at time tn. If F is less than or equal to zero, the step is 

elastic and the new stresses are sent back to the main routine. It is important to note that the 

internal variable {b) is a measure from the current stress point to the Bounding Surface and 

has to be recalculated elastically (not evolved), even for an elastic step. If F is greater than 

zero, the trial stress state is used as the initial guess for the plastic iteration. A case that is 

unique to the Bounding Surface model occurs when the elastic "trial" step is outside of the 

elastic bound but does not go outside of the Bounding Surface. Treating the stress measure 

(b) as an internal variable allows for proper evaluation of the consistency condition. Using 

the "trial" stresses and b evaluated at time tn results in the image stress state (an+l) being 

outside of the bound (F > 0), thus indicating plasticity. This is shown graphically in 
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Figure 2.6-1. The plastic iteration begins evolving the plastic strains and the internal 

variable (now using Equation 2.6-10) and continues until the value F is less than some 

tolerance associated with the Bounding Surface function and the norm of the residuals is 

less than some tolerance associated with the residuals. At convergence the image stress 

state coincides with the bounding surface. The plastic algorithm is shown in Box 2.6-1. 

The algorithmically consistent tangent moduli are the same as described in Section 2.4 

(Equation 2.4-7). 
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Box 2.6-1. Fully Implicit Closest Point Algorithm for Bounding Surface Plasticity 

1. Given: On+l,en+1,0
p,ep

n,bn 

2. Initialize: * = 0,   /£> = 0,   C=^   #?,=*».   «-C = < 

3. Evaluate 2, 70, 5 and associated terms: 

ß{8'^-8'„) 
n+1 n *£!=-«{    (/>/i) 

4.   Evaluate the functional and residuals: 

77U) _ J?(c(k)    j(k)    j(k)    h(k)\ n(t)_ 
rn+I   ~ •r\i*«+l'Yn+l'-lo„tl'

t/n+l j Än+1 

cn+l -< 

6L\ -0: 

K\ -K\ 

(*) 

(*)   7« +ri:z, n+1      n+1 

5. Check convergence: If F^ < tolerance F and \R(^\ < tolerance R    Then:   EXIT 

6. Compute derivatives and assemble matrices (note, derivatives of g are 

estimated via finite difference): 

A'1 

-7 
dlF 

2G     ' { c£(k 

0  y 
K 

d2F    H  d2F 

~^t 

£_F_ 
dscb 

(£F_ 
'7{dldb 

1 ,9/   A: <?/„ I* 

5/*   * <?/<?/„ 

7.    Solve for increment in stresses and internal variables, 

Al£{=-A£{[Ä + AyZ] Ay^ = 
A. + 1 ~ V*n + 1   An + 1  Kn+1 

V7T?«:)    j(*)   "7<t) 
V*n+1 An+i Zin+, 

n+1 

8.    Solve for plastic strains: 
Aep 

A6P 

(k) 

n+1 

1 
(k) 

Jn+1 

As 

AI 

(k) 

-n + 1 

(*> 

2G    K 

9. Update:   ,£" = ,£' + A,„C; e£" = e£ + Afl£; ^l" = ft«, + *C; r'+f = C + A7« 

10. Set:        k <- k+1 and go to step 3. 
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— trial 

Figure 2.1-1. Closest Point Projection - Simple Model. 

Figure 2.1-2. Plastic Iteration in Closest Point Projection Method. 
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Oo 

Figure 2.3-1. Closest Point Projection - General Model. 

/, J), 

Figure 2.6-1. Use of Internal Variable b for Determining Plasticity within the Bound. 
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3. Reduced Newton Method 

The Reduced Newton method was developed by Leonard Herrmann for integrating 

the two-dimensional Cam-Clay model [Roscoe and Burland, 1968]. The method maps the 

stress rate equations and the consistency condition into a single nonlinear equation and 

integrates them with backwards Euler integration using Newton-Raphson iteration. The 

method incorporates uniform substepping and has been implemented into a steady-state 

finite element program [Herrmann, 1997]. 

For simplicity, the application of the method will be restricted to the case where 

there is no dependency on the "lode" angle (it is assumed that the results of compression 

and extension triaxial tests are approximately the same). This special case will be referred 

to as a two-invariant model. 

Applying the Reduced Newton method to the two-invariant Bounding Surface 

Plasticity model for clays requires a second equation that determines the level of plasticity 

occurring within the Bounding Surface (Equation 1.2-4). This section describes the 

method applied to the two-invariant version of the clay model. 

Section 3.1 simplifies the Bounding Surface model for clays to a two-invariant 

form. Section 3.2 describes elastic stress paths that begin inside the elastic nucleus and 

intersect with it. The elastic algorithmic consistent tangent moduli are developed in Section 

3.3. Section 3.4 explains the "Reduced Newton" stress point algorithm for plastic 

calculations. The corresponding plastic algorithmic consistent tangent moduli are 

developed in Section 3.5. Finally, Section 3.6 discusses the handling of the unloading 

stress path. 
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3.1  Two Invariant-Bounding Surface Plasticity 

Section 1 describes the Bounding Surface Plasticity model for clays when all three 

stress invariants are involved. The model can be simplified when it is only a function of 

two invariants. The Bounding Surface becomes in this case: 

F = £2.J2+(7_^)2_172=0 (3.1-1) 
*1 

where     F - Bounding Surface function 

I=b(I-IJ + Ic 

I = first stress invariant = {a,, + <722 + a33) 

b = measure of distance between stress point and surface (> 1) 

C = material constant defining the projection center location 

I0 = bound size (i.e., intersection of bound with volumetric axis) 

J =bJ 

J = second stress invariant ^jj SySy 

1 \ ..      M 
,2      a2=T7i-r      P = -      N=: — 1     (l-p)2 2     N2p2 r     R V27 

M = slope of critical state line in triaxial space (assumed the same 

in extension and compression) 

R - shape of ellipsoid. 
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This function uses the soil mechanics sign convention of compression as positive and 

tension as negative. The surface is shown in Figure 3.1-1. 

3.2  Elastic Calculations 

For stress paths starting within the elastic nucleus, a closed form solution can be 

found to predict the intersection of the path with the elastic nucleus. The beginning and end 

of the step are denoted by tb and telas respectively. Therefore, I(tb) = Ih is used for the 

beginning of the step and I(telJ = Ielas for the end of the step. 

To find the results of an increment of strain with a beginning value and an assumed 

proportional strain history for t = 0 -> 1, a relative time scale is used since viscous effects 

are not present. The strains can be written as: 

£„(*) = £„,+Aty (3-2-D 

The rates of the total, deviatoric and volumetric strains are: 

8,= As,,   ey=Ae,,   d = A6 (3.2-2) 

The Bounding Surface Plasticity model for clays uses the log-linear relationship for 

the volumetric stress versus the void ratio for volumetric stresses greater than the transition 

stress'(/,) and a linear-linear relationship for stresses less than /,. This is shown in Figure 

3.2-1 and discussed more thoroughly in Section 1.3. 

Now at some point, t in the interval Equation 1.3-8 can be written in the form: 

I = l/[e'~el) (/>/,) (3.2-3a) 

/ = j8/,(ee-e;)+/ft (/</,)      (3.2-3b) 

It is assumed that the path from time tb to t will be entirely elastic 
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(i.e., 6e -61= A6et). Because this is an elastic step (A6e = Ad), however, the V 

notation will be used to emphasize of the nature of the elastic step. The volumetric 

expressions can be rewritten in terms of the strain increment as: 

I = Ihe
ßAe'' (/>/,) (3.2-4a) 

I = ßI,A6et + Ih (/</,) (3.2-4b) 

The tangent bulk modulus is a function of the pressure only and can be found by 

taking the derivative of Equation 3.2-3 with respect to the volumetric strain: 

B = -— = -ß (/>/,) (3.2-5a) 
3d6e   r 

B=    ^ß (/</,) (3.2-5b) 

Writing the modulus in terms of the behavior at the beginning of the step, the 

following is obtained: 

B = Bbe
ßhe'' (/>/,) (3.2-6a) 

B=    Bh (/</,) (3.2-6b) 

where     Bb = tangent bulk modulus at the beginning of the step. 

The shear modulus at time t can be expressed in terms of the bulk modulus as: 

G = T]B (3.2-7) 

3(1 -2v) 
where     r\ = 

2(1 + v) 
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Writing this in terms of the value at the beginning of the step, the following is 

obtained: 

G = Ghe
ßAe'' (/>/,) (3.2-8a) 

G = Gb (/</,) (3.2-8b) 

where     Gb = shear modulus at the beginning of the step. 

The relationship between the deviatoric stress rate and the deviatoric strain rate is 

given as: 

si}=2Gel (3.2-9) 

Substituting Equation 3.2-8 into 3.2-9, the deviatoric stress rate can be written as: 

stj=2Gbe
ßAe''i; (/>/,) (3.2-10a) 

s^=2Ghel (/</,)        (3.2-10b) 

Integrating the above expressions from 0 to t yields: 

siJ(t) = 2GbAe:jf(t) + slJb (3.2-11) 

eßA9C' -1 
where     /(f) = (/>/,) 

f(t) = t .(/</,) 

Using the definition for/(f) in Equation 3.2-11, Equation 3.2-4 can be rewritten as: 

I = ßA6*f(t)g(I) + Ib (3.2-12) 

where     g{I) = Ib (/>/,) 

*(/) = /, (/</,) 
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The following definitions will be required for the development of this method: 

I2 =(ßA6*f(t)g(I)f +2ßAd*f(t)g(I)Ib+I2
h (3.2-13) 

I = bI + (l-b)Ic (3.2-14) 

P=(blf+2b(l-b)IcI + (l-b)2I2 (3.2-15) 

J2=isljSlJ=(2Ghf(t))2
%1 +2Gbf(t)%2+J2

h (3-2-16) 

J = bJ (3.2-17) 

where      Xy=l^l^l 

Now the value of t = t is defined where the stress path intersects the elastic surface. 

The equation for the elastic surface is given by Equation 3.1-1 using the value of b that 

defines the size of the elastic surface (belaslic in Equation 1.6-5). Replacing b with bdastic and 

t with t in Equations 3.2-13 through 3.2-17 and substituting these equations into Equation 

3.1-1 gives: Ö* 

F = q2f
2(t*) + qif(t*) + q0=0 (3.2-18) 

where      q2 = ^{lbelastic Gb f Xl + (bdiatjAeeg(I)f 

9i = -b2
elastic2GbX2 + 2b2

!astjAdeg(I) I„ 

+ 2belastlc({l ~ belastlc)lc - pI0)ßAÖeg(I) 

q0 = F evaluated at time th. 
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The above equation can be solved for/ (f =f(t*)) using the quadratic formula: 

r = Z^Mz^l3L (3.2-19) 

Possibilities for these roots are shown in Figure 3.2-2. For a strain increment in a 

positive direction, the positive root is needed (shown in Figure 3.2-2a); hence the + sign is 

used in Equation 3.2-19. For a strain increment in a negative direction, the roots would 

reverse; hence, the + sign would still be used. For stress points close to the elastic surface 

and a strain increment in a positive direction, the root is near zero (as shown Figure 3.2-2b) 

and still requires using the + sign in Equation 3.2-19. It is important to note that round-off 

error could actually cause the root to become complex (i.e., the term in the radical may be 

negative). In that case, the root is then taken to be zero. For stress points close to the 

elastic surface and a strain increment in a negative direction, the positive root is needed 

(shown in Figure 3.2-2c) thus requiring the + sign. When the direction is tangent to the 

surface (as shown in Figure 3.2-2d) two zero roots are the result. In all cases, however, 

the + sign is used before the radical in order to ensure a positive root. 

At this point, the length of the elastic step (s) is sought. The value of s will be 

equal to the value of t* where the stress path intersects the elastic surface, or the upper limit 

of t = 1 when the step is entirely elastic. Thus, two questions must be considered in 

assigning the elastic step size: 

1) Is the indicated step greater than 1? (indicating that the strain step is 

entirely elastic, as in Equation 3.2-1) 

2) Is the transition stress crossed? 

One approach is to evaluate / (from Equation 3.2-12) and test for the crossing of the 

transition stress. However when the indicated step size is very large, numerical problems 

could occur, especially for / < 0. Therefore, the step size tests are done on the variable/ 
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where/is defined in Equation 3.2-11. The limit on the value off for s<\ is: 

f,=-  (/>/,) (3.2-20a) 
Jl       ßAO 

f=\ (/</;) (3.2-20b) 

To determine whether the stress path has crossed the transition stress (/,), the value 

off when the transition stress line is crossed is found as follows: 

f,=4—~ (/>7'} (3-2-21a) 

f=±—^- (/</,) (3.2-21b) 
'     /JA0 7, 

If the path has crossed the transition stress, the elastic calculation is done as two 

steps (e.g., the first step is up to I, and the second is beyond). 

The quantity/* is first found using Equation 3.2-19, then compared against 

Equations 3.2-20 and 3.2-21. The smallest value of/is taken: 

fmm = min [/*/„/,] (3-2-22) 

The elastic step size (s) is determined from Equation 3.2-11: 

s = -^ln(ßA8*fmm+l) (/>/,)■        (3.2-23a) 

, = /mjn       ' (/</,) (3.2-23D) 

Once the value of s is found, t is set to s and this result is substituted into Equation 

3.2.12 to find the value of the volumetric stress (Ielas). When I > 7,and A0= 0, the 

equations simplify to: 

I**=h        s^=2Gbäevs (3.2-24) 
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The stresses at the end of the elastic step are determined by: 

<7tfd_ = (Tft +2GbAe; f{s) + ±M60 (3.2-25) 

where        AI = ß Ade f(s) g{I). 

Once the stresses are calculated, the loading surface measure (b) is updated along 

with the stresses. If s < 1.0 then the remainder of the step (i.e., t* < t < 1) is plastic. The 

updated values (Ielas, etc.) are now the beginning values for the start of the plastic step (or 

the beginning values of the second elastic step if the transition stress is crossed). The flow 

chart for the elastic evaluation is shown in Figure 3.2-3. 

3.3  Elastic Contribution to the Global Jacobian 

Once the length of the elastic step (s) is found, the elastic contribution to the global 

Jacobian matrix 
fda.\ A 

'J\s 

dA£kl 

must be calculated. Recalling the development of the elastic step 

in Section 3.2, the elastic Jacobian is also evaluated in terms of deviatoric and volumetric 

components. The decomposition of the stress tensor is given as: 

^=Sö+\IS, (3.3-1) 

where     oy = total stress 

stj = deviatoric stress 

I = volumetric stress (<Jn + o22 + a33). 

Differentiating the stress at s with respect to the increment of strain results in: 

do A      dsA      . _   dl\ 
'j,        y 

<9Ae.,     Ö>A£„        y dAe 
+ i<5,—^ (3.3-2) 
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The volumetric portion can be evaluated by differentiating Equation 3.2-4 with 

respect to the strain increment and setting t = s: 

dAe,, 
= ß IsSt (/>/,) (3.3-3a) 

dl\ 

dAe, 
hßs8kl (/</,) (3.3-3b) 

The deviatoric portion is evaluated by differentiating Equation 3.2-11 with respect 

to the strain increment: 

ds:, 

dAe,, 
2Gh 

dAe*eßAe's-l    dAde Ac' ( 
■ + - 

dAekl   ßA6e      dAekl A6e 
se ßA$'s 

ßA8es      i ~\^ e       —1 
ßA6e (/>/,) (3.3-4a) 

JJ 

ds„ 

dAe, 
^ = 2Ghs- 

dAe; 

dAe, 
(/</,) (3.3-4b) 

For stress paths that cross through the transition stress (/,), the values on both sides 

of/, contribute to the global Jacobian. In order to develop their respective contributions, 

consider the current stress which is a function of the previous stress and strain increment: 

^■=^K4.Aea) (3.3-5) 

Now if two (or more) steps are taken (i.e., oh -> <7S —»cr^), the final stress can be 

written as a function of the intermediate stress and a portion of the strain increment: 

°ijn   =(Jij(<Jkl^{S2-Sl)Aeiä) (3.3-6) 

where     s; - length of first portion of the step 

s2 = length of second portion of the step. 
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Differentiating Equation 3.3-6 with respect to the strain increment and applying the 

chain rule results in the Jacobian matrix: 

dCu[,   _ d(Jmn\ 
+    (s2-Si} 

da. 

dAe, 
+ 

dCT;, 
 ^Ae 
dAe 

d(s2 -sl 

qr 
dAs, 

(3.3-7) 

where     5,mn= — 

For simplicity, the last term in Equation 3.3-7 (the term in brackets {}) has been neglected. 

Additional derivatives that will be required later in the calculation of the plastic 

contributions to the global Jacobian are: 

1) derivatives with respect to the increment of strain of the square of the second 

stress invariant (J2), and 

2) the distance from the current stress point to the Bounding Surface (b) with 

respect to the increment of strain. 

Differentiating the square of the second stress invariant (as defined in Equation 3.2-16) 

results in: 

*« dJ2 

dAea    dAekl " 
S:; (3.3-7) 

The distance measure (b) is found by substituting Equations 3.2-14 through -18 

into the Bounding Surface function (Equation 3.1-1) and solving the resulting quadratic 

equation. The equation for b is: 

-(C-p)(/-C/0)±^/ 

b = I 
a, 

a. 
(3.3-8) 

2    72 J2+{I-CI0) 
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For b to be positive (and knowing that ap a2 and J are always positive), the + sign 

is used before the radical. The derivative of b with respect to the increment in strain is 

given, noting that In is fixed for an elastic step: 

db 

dAe, 

-1 

*2    j2 

where 

J2+(I-CI0) 

dJ   _  1    dJ2 

dAekl    2J dAekl 

(C-P) 
dl dJ 

dAs,. a,   dAeklJ 

+b 
df 

\ax <?A£W 

• + ■ 
dl 

dAe Id ) 

(3.3-9) 

3.4    Plastic Calculations 

The plastic part of the increment begins at the end of the elastic step. The stresses 

and strains are updated after the elastic step. The beginning of the plastic step is designated 

with a subscript b and treated as a new step with: 

tb = 0,   £y <r- £ih + AfiyS,   Aetj <- (1 - s)Aeij,   A0 <- (1 - s)A6 (3.4-1) 

To assure accuracy, the plastic step will allow substepping. The strains are sub- 

divided into N uniform substeps as follows: 

Ae,.; = 
>Jn N 

(3.4-2) 

The notation used throughout this section is I(th) = Ib for the beginning of the step, 

I(tJ = In for the beginning of the substep, and I(tn+]) = In+1 for the end of the substep. The 

plastic volumetric strain can be written in terms of the total strain and elastic strain as: 

ep(t) = e(t)-ee(t) (3.4-3) 
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Rewriting Equation 3.4-3 in terms of the strain increment gives: 

ep(t) = 6b+A8{t-th)-dt-A6e(t-tb) (3.4-4) 

Solving Equation 3.2-4 in terms of the elastic strain increment and substituting into 

Equation 3.4-4 yields: 

1 
e>(t) = 0b+A0{t-tb)--]n 

\ h J 
■et (/>/,) (3.4-5a) 

ep(t) = eb+Ae{t-tb)- 
ß 

J{t)-h -et (KI,) (3.4-5b) 

Differentiating these equations with respect to time tn+] (noting that the beginning 

values are fixed) results in the rate form relationship between the total, elastic and plastic 

volumetric strains. This relationship is written as follows: 

8L = A6-\In+l 
'n+\ 

ßl, 
(/>/,) (3.4-6a) 

n+l 

öL=AÖ-4/n+1 
'n+l 

ß     h 
(/</,) (3.4-6b) 

The associative flow rule for the volumetric plastic strain rate in the Bounding 

Surface formulation is given as: 

8"  =3y   — un+l        J / n+l   -tj 
(3.4-7) 

n+l 

where     yn+] = plasticity parameter (loading index). 



80 

Using Equation 3.1-1, the derivative of F with respect to 7, taken at tn+], can be 

expressed as: 

dF_ 

dl 
= 2(/„+1-p/J (3-4-8) 

where     7„+I =bn+l(ln+] -C70J + C7^. 

Combining Equations 3.4-6, 3.4-7 and 3.4-8 yields the volumetric differential 

equation that must be satisfied during plastic deformation (where t = tn+1): 

6r„+1(L,-p/.J = AÖ-i^ (/>/,) (3.4-9a) 

6r.+1(/(1+,-P^.1) = AÖ-i^- (/</,) (3.4-9b) 

At this point, the unknowns in Equation 3.4-9 include the volumetric stress, the 

volumetric stress rate, the loading surface measure, the plastic parameter and the bound size 

(7   ,7  ,,b  ,,r   ,, 7    , respectively). The evolution of the Bounding Surface size for 

clays (70) is described in Section 1.5 [Kaliakin, 1985; Dafalias and Herrmann, 1986]. 

Equation 1.5-8 written in terms of the strain at the beginning of the step is given as: 

«(*.-**) (3.4-10) I     =1  e 
"n*\ °b 

Noting that A0£., = 6p
n+x - Bp

h and tb = 0, Equation 3.4-5 is now substituted into 

Equation 3.4-10 resulting in: 

/A9fii+1_Ilnfia±L] 
7     =I0e

[        P   {h}) (/>/,) (3.4-1 la) 

5|A0«.tl- 
l('"'-'k 

ßt  I, I     =Ioe^ PV   "   n (/</,) (3.4-1 lb) 
<Vi "b 
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For the special case of the volumetric stress (7) crossing the transition stress (/,), the 

equations can be modified to incorporate the transition. This case requires adding the 

known distance (from the current stress point to the transition stress) to the unknown 

distance (the term in parentheses in Equation 3.4-11). For stress points originating in the 

log-linear region (Equation 3.4-1 la), the known distance is in the log-linear portion and the 

unknown distance is in the linear-linear portion. For stress points originating in the linear- 

linear region, the reverse is true. The modification is given as: 

l,e 
d A0r„+1 

'< 1 . '.«■-'» 
h I, (/^and/„+,</,) (3.4-12a) 

'...,=V 
Aer„,,-— k±+J!* 

(/,</,and 7„+;>/;)        (3.4-12b) 

The unknown volumetric stress rate (/n+1) can be approximated with a backward 

differences formula: 

r _ /'n+l        K 
'n+l At 

(3.4-13) 

Using Equations 3.4-11 through -13, the unknowns in Equation 3.4-9 are now 

reduced to just 7B+1, bn+l and yB+1. 

Similar to the volumetric strains, the deviatoric total, elastic and plastic strain rates 

at the end of the step are related via: 

e..    =ee.   +ip 
y.+i       y»+i      y»+i 

(3.4-14) 

The elastic deviatoric stress-strain rate relationship is given as: 

«.♦i     2G 
(3.4-15) 

n+\ 



It is important to note that the shear modulus (Gn+, defined in Equation 3.2-8) is a 

function of the bulk modulus (Bn+]) which, in turn, is a function of the volumetric stress 

(In+!). The associative flow rule for the deviatoric plastic strain rates in the Bounding 

Surface formulation is given as: 

e->    = Yn+i 

rdF^ 

V^A+1 

(3.4-16) 

The derivative of the Bounding Surface function (F) with respect to the deviatoric 

stresses can be expressed in terms of the invariants as: 
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fdF^ 

K*fU»*i \dJ2 Jn+l 

fdl^ 

V^A+1 

(3.4-17) 

where 
f dF^ 

\dJ  Jn+]     ax 

= \„ = K^u,+I ■ 

An approximation for stJ    of Equation 3.4-15 is made by a backward difference 

formula resulting in: 

*•♦' Ar 
(3.4-18) 

where      At = tn+l —tn = 
l_ 

N' 

Substituting Equations 3.4-15 though -18 into the strain rate equation (Equation 

3.4-14), and recalling that the deviatoric strain rate is Ae;>. = etj, yields: 

Ae,J~2Gn+lAt    +    a/"+1"+1^ 
(3.4-19) 
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The expression can be solved for the deviatoric stresses at the end of the step as: 

s. 
2Gn+IA^y+   siJn 

y»*i 

l + 2Gn+lAt-±yn+lbn+l 

a2 

a, 

(3.4-20) 

The square of the second invariant is: 

Jn+\        2 ">i/„+I'
>y„+, 

(3.4-21) 

Substituting the deviatoric stress defined in Equation 3.4-20 into Equation 3.4-21 

results in the deviatoric equation that must be satisfied during plastic deformation: 

4G2
n+,At2zl+2Gn+]Atx2 + J2

n 

\2 

l + 2Gn+1Ar-^7„+1Z7, «+i J n-i-l (3.4-22) 

where     %x=\be.^ 

J2 =Ls  s 

The unknowns in these equations include the new shear modulus (which is a 

function of the volumetric stress), second stress invariant, loading surface measure, and the 

plastic parameter (7n+1, J2
+l,bn+1 and yn+1, respectively). The square of the second invariant 

can be solved for by rewriting the Bounding Surface equation (Equation 3.1-1) as: 

Ci = 
1 

*A+i 
C-^-PO2 (3.4-23) 

This reduces the number of unknowns by defining J2
+i, but introduces /    . 

Recall, however, that Equation 3.4-11 relates /„+] to In+1, thereby leaving the same three 

unknowns as in the volumetric equation (Equation 3.4-9): In+i,bn+l and yn+i. 
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At this point, since there are two equations (Equation 3.4-9 and Equation 3.4-22) 

and three unknowns, a third equation is required. The obvious choice is an equation that 

relates the plasticity parameter to the amount of plasticity deformation occurring within the 

bound. The fundamental equation of the Bounding Surface Plasticity concept [Kaliakin, 

1985; Dafalias and Herrmann, 1986] relates the plasticity to the current stress state. 

Equation 1.2-4 can be rewritten in terms of the invariants as: 

Yn + \ K, 
-7—1 f 3v\ 

'„+,+ 
dF 

dJ )n+ 

h    J1 (3.4-24) 

The definition of the hardening modulus [Kp^ )is given in Equation 1.6-4 

[Kaliakin, 1985; Dafalias and Herrmann, 1986]. The volumetric stress rate (/B+1) is 

approximated in Equation 3.4-13, and the second invariant rate (j„2
+1) is evaluated by 

taking the derivative of Equation 3.4-23 with respect to the current time (fn+/): 

V2 2£„+1      2 1 
Jn+\  ~ , Jn+\ "r ,2 h     h       ~ ü [h«-Ph„){ln«-Ph„) (3.4-25) 

The time derivatives of the Bounding Surface size are achieved by differentiating 

Equations 3.4-11: 

L,=IoJ 
f     i / ^ 
Ad-    "+1 

ßl, 
(/>/,) (3.4-26a) 

n+l J 

L>=I*J 
r     i / A 

Ad      n+l 

V ß I 
(!<!,) (3.4-26b) 

/ J 

For the special case of the volumetric stress crossing the transition stress (Equation 

3.4-12), the "a" and "b" equations are reversed (i.e., Equation 3.4-25a is used for I<I, 

and Equation 3.4-25b is used for />/,). 
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The rate of the loading surface measure (&n+i)is approximated with a backward 

difference formula as: 

Ar 

Using Equations 3.4-25 through -27, the number of unknowns for Equation 3.4-24 

is reduced to the same set of unknowns as in the volumetric and deviatoric equations 

(Equations 3.4-9 and 3.4-22), In+l,bn+1 and yn+1. The equation is purposely written so that 

the hardening modulus (Kp t) appears in the denominator. This is necessary because as 

the stress state approaches the elastic bound, the hardening modulus approaches infinity at 

a rapid rate. When the hardening modulus is in the denominator, the plasticity parameter 

approaches zero as the elastic bound is reached. 

Since the equations are extremely complex, the solution for the three unknowns is 

achieved with Newton-Raphson iteration. The approach used in this study is to treat / and 

b as independent variables in the volumetric and deviatoric equations (Equations 3.4-9, 

3.4-22). The Bounding Surface equation (Equation 3.4-24) is solved for the plasticity 

parameter (y). Another approach that was used for the Cam-Clay model [Herrmann, 1997] 

is discussed in Appendix B. The residuals are defined as the error in the governing 

equations (Equations 3.4-9 and 3.4-22) and are given as: 

Ä, 
1 I 

= 6 7„+1(/n+1-pO-A0+--TiL (J>V        (3-4-28a) 
P   1n+\ 

*1=67n+1(/„+1-pO-A0 + -^ (/</,) (3.4-28b) 
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Ä, 

A2 

l + 2Gn+1At-±yn+ib, B+l /2
+1 -4G2

+1Ar2*> -2Gn+1Atx2 ~K (3.4-29) 

The Newton-Raphson method iterates on the independent variables in order to find 

the roots of the residuals. The general one-dimensional form is given as: 

XM   = X: - (3.4-30) 
'  /'W 
where     i = iteration counter 

xi+1 - improved value of x 

xt = previous value of x 

f(xj = residual (function of x) 

f(x.) - derivative of residual with respect to x. 

The two-dimensional form involves matrices and matrix inversion and is given as: 

f'l 
\b\ \b\ 

-x¥. 
i,n+\ 

(3.4-31) 
i,n+] 

where      *¥ = 

dR, dR,~ 

dl 
dR2 

db 
dR2 

dl db . 

The local Jacobian Q¥) is defined by taking derivatives of the residuals with respect 

to the independent variables / and b (note that when taking derivatives with respect to one 

independent variable, the other independent variable is held constant). Dropping the 



iteration counter (0 for clarity, these derivatives are given as: 
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. dl L 
= 6y„+, 

f 2l   \ 

-P + 6(/„+1-p/„„J 
(dy_\ 

\ & Jn+i 
(7>/.)(3.4-32a) 

+- 
ßh + 1 

1 /. n+l 

At       I n+l J 

V 31 J„+i 
= 6y„ 

(fdi^ 
+i 

3i [\<»Jn + l KMJn + l) di 
+ 6(^1-^„J 

f3£ 
. 31 y„+l 

(/</,) (3.4-32b) 

+- 
ß&In+l 

^<9/0 
db )n+ 

= 6yB+l + 6(/„+1-p/„„J (3.4-33) 

(MA 

+ 

4At^bn+l l + 2Gn+1At^yn+lbn+i 

f       ^^:A 
7n+l 

a 
l + 2Gfl+1Af-2-y„+A+1 

a, 

Va/2^ 

V /n+l 

<# J„+i 

(3G\ 

+ G n + l 
\<% Jn+\J 

'n+l 

8G„+1A^i —      -2A#: 
V o» A+i 

(3.4-34) 

r3Rl\ „A    a2^ —-       =4 At—G. 
v * A+i        < 

f 

n+l i + 2Gn+1AAr„+A+i 
a, 

\ 

yn + l+^n + 
\3bjn+lj 

J, n+l 

+ l + 2Gn+]At—7n+A+l 

V'aj2^ 
\ db j V /n+l 

(3.4-35) 

The derivatives of the plasticity parameter are given as: 

( 7h,\ dy 

\dlj K n+l Ap VV 01  A+l 

fdF) 
di 

'n + ,+ 

K„ v^y„+, 

\dl2 Jn+i 
bn+\^n+\ 

( 3f> 

'ao 
\ 31 y„+i 

+i di 
+ 

\°lJn+X       ^°J    A + l 

'dj^ 
'n+l 

V /n+l/ 

(3.4-36) 
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fdy) 
V db )n+l 

ffdF\ 

Ki 

K„ 

\\ & Jn + l 

^d2F^ 

Ci + 
f dp\ 

dJ2 
u

n + iJn + 1 

4+,+ 

\°J     Jn+\ 

( dF\ 

dJ2 

V db Jn+l 

f 2T7\ 
7Z   + Jn+\ T 

\0J    Jn + \ 

dF fdJ^    ^ 

&L" 1+1 

V /n+1/ 

(3.4-37) 

The local Jacobian introduces a large number of derivatives. These are summarized 

below and are grouped by terms. Some of the terms were defined previously (and hence, 

their original equation numbers are used), but they are grouped here for clarity. The 

pertinent derivatives of the volumetric stress (7) are given as: 

r _   ^n+I *n 
n+1 At 

(3.4-13) 

ä. 
di At 

(3.4-38) 

I^=l>n4I*«-CIo„,)+CI'~l 
(3.4-39) 

a. 
di 

= bn+]+(l-bn+i)C^ (3.4-40) 

db 
= ^-CL 

n+1 

(3.4-41) 

L =K4I^-CI°J+b»4I^-ci°J+cL> (3.4-42) 

dl 
= b. + b n+1 

n+1 J 

di_ 
di 

-c 
n+1 

EL 
dl 

+ C 
n+1 J 

dl 
n+1 

(3.4-43) 

db 
db 

db 
\-C 

n+1 V 
dl n+1 / 

HLi-ci^) (3.4-44) 



are: 

The derivatives of the other independent variable (b), the loading surface measure, 
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yn+\ At 
(3.4-27) 

db_ 

db 
n+\ 

J_ 
At 

(3.4-45) 

The derivation of the shear modulus (Equation 3.2-8) shows that for the log-linear 

range, the modulus is a function only of the volumetric stress. The derivative of the shear 

modulus with respect to the volumetric stress is given as: 

(—) 
V dl )n+ .      h 

(/>/,) (3.4-46a) 

V dl Jn+l 

= 0 (/</,)        (3.4-46b) 

The derivatives of the Bounding Surface function (F) are: 

fdF] = 2(/„+1-p/„J (3.4-47) 

f dF^ 

M    )n+l a\ 

(3.4-48) 

= 2 
(2l   \ 

-P 
dl)n+ V 

(3.4-49) 

fd2F^ 

ydidb,n+i 

= 2 
\dbJn+X 

(3.4-50) 



The second invariant (72) and its derivatives are: 
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7 
a2bn + l 

7L-fli(^i_^,)2 (3.4-23) 

fdJ2^ 

dl v °" y„+ °A+i 

'an 
<?/ v « yn+i 

-flift+i-P7».,,) 
"äP 
VV^A+i 

-P f—1 V<?/ A+iy 
(3.4-51) 

O/2^ 
dfc 

27. n + l 

V  vu J n+l ^n+1 «2^ + 1 
«i(Li-PO (3.4-52) 

V2      _      2fc„+1   f2 

•'n+l  — , 
^n+I 

7Z   + Jn+1 T 

«A-l - 
7", + ,C   -a>(7«+l -P7«.j  7-> -P^V (3.4-25) 

I ^ L 
2*. ^72^ 

(9/ 
+ ■ 

'n+l    V  OT   A + l        "2^n+l ÖT^. 

rao f if A 

-)r "«-n 
dl A+i 

/..    + 7. 
dl 

V /n+l 

—öS, 

VV^A+i 

-öi(7„+i-p7„„J 

dl )n+ij 

dl 

h^-Ph,^ 

(9/ 
-P 

'an 
<?/ 

v   A+i     v    Jn+l 

(3.4-53) 

072^ 
V /n + l 

Arfc. 

r2       ,   2 &„■!■!    .2 
"•'n + l "*"    , 2 n + I 

2fr. /D|-2\ 
n+l 

+ 1 

dJ 

db n+l    V uu Jn+l 

«A+l 

2a, 

7^, C ~ fli (7«+i - P7«.., )(7«-i ~ P7«.. 

a2bn+l V        /n+l 

7n + l-Pn,) + (7n+l-pO 
'dP 
.db. 
V        /n+l 

(3.4-54) 



The Bounding Surface size (/0) derivatives are: 
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L    =Le ̂ '--MT (/>/,) (3.4-1 la) 

«„*, <>, Le 
« Aer„„ i U+izh 

ß{   i, (/</,) (3.4-1 lb) 

(/>/,) (3.4-55a) 

fn \ dl. 

dl L,        ß   h 
(/</,) (3.4-55b) 

"»+1 °n+!' 

' 1     / A 

A0-      "+1 

V /U n+l y 

(■/>/,) (3.4-56a) 

L,=I°J 
f    i / ^ 
A0-      n+1 

V J8   /, ; J 

(/</,)        (3.4-56b) 

A ->f 'A '    i / A 

A0 n+I --L 
ß /„♦, J    £ ""' 

'n+l 

V^4+i    vi; 
(/>/,)        (3.4-57a) 

fdO fla ^ 5/. 

V /n + l x dl )n+l 

f 1    /       ^ 
A0--^+1 --/.. 

ß   I, J    ß "°+' *h 
(/</,)        (3.4-57b) 

For the special case of the volumetric stress crossing the transition stress, Equation 

3.4-12 is used for I0 and the time derivatives are reversed (i.e., Equation 3.4-56a is used 

for J < 7;and 3.4-56b is used for I > /;). 

The Newton-Raphson method is set up using Equations 3.4-28 and -29 as the 

residuals and In+] and bn+1 as the independent variables. The method is begun by assigning 

In+I and bn+1 their current values and calculating a new estimate with Equation 3.4-31. The 

iteration continues until a convergence criterion is met. The criterion chosen for this study 
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is that the change in residuals be smaller than a user-defined percentage of the absolute 

value of the total strain increment. This is given as: 

2JAel 

where     \\R\\ - norm on the residuals. 

This requires that the residuals are in terms of strains, or at least their magnitude is 

that of strain. Another advantage of having the residuals near the same magnitude is to 

prevent any numerical problems in the matrix inversion. Residual 1 (Equation 3.4-28) is 

already in terms of strain. Residual 2, however, (Equation 3.4-29) is in terms of stress. 

This residual is given the magnitude of strain by dividing it and its derivatives by the initial 

shear modulus. The new residual and derivatives are given as: 

R^ dRi = ±dR2_ dK^J_dR^ 
2     Gl ' dl      Gl  dl db     G\  db 

In order to add robustness, the plastic increment is uniformly substepped as 

described in Equation 3.4-2. First a single step is tried, then the strain increment is divided 

by two and the stress recalculated. This process continues until some convergence criterion 

is met or the maximum number of allowable substeps is exceeded. In order to compare the 

various methods, a criterion based upon terms that are present in each of the methods was 

chosen. The criterion used for the substepping evaluation is that the change of the 

Bounding Surface size (/„) should be less than a user-defined tolerance. This is written as 

follows: 

%Io^-h^.m_)<TolerI<]    OR    [lt>ItM]}   THEN:   EXIT (3.4-60) 

where     /       = stress at end of step and substep level, m 

I        - stress at end of step and substep level, m-1 
0ji+l.m-l 
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m = substep level (i.e., number of substeps = 1, 2, 4, 8, 16, ...) 

It = iteration counter 

Itmax = maximum number of iterations. 

Another criterion considered involves the stress distance measure (bn+1). The value 

of bn+! is used during the iteration as an independent variable. It can also be calculated 

independently knowing the stress state and the Bounding Surface size (Equation 3.3-8). A 

convergence criterion can be defined as follows: 

l{K^-bcalc)<Tolerb]    OR    [lt>Itmj}    THEN:   EXIT (3.4-61) 

where     bcalc - b calculated from In+l, J
2

n+X and I0^. 

This criterion is important for stress points near 1 = 0, J = 0 and C = 0 because the 

iteration residuals, and thus the iteration criterion (Equation 3.4-58), are near zero, but the 

variable b can vary significantly. 

An important difference exists in the use of the subscripts b and n. Most of the 

equations for the method are defined in terms of the beginning of the plastic increment 

(e.g., If). Terms defined at the beginning are fixed, thus simplifying derivations (i.e., 

terms defined at time tn do not contribute to derivatives taken at time tn+]). The rate 

equations for the independent variables / and b (Equations 3.4-13 and 3.4-27), however, 

require information at the beginning of each substep (i.e., In and bn). Therefore, the 

independent variables at the end of the substep must be reserved for calculating these rate 

equations and for eventual use in computing the algorithmic consistent moduli (Section 

3.5). The algorithm is given in Box 3.4-1. 
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Box 3.4-1. Reduced Newton Algorithm for Plastic Steps. 

1. Set Substep Level:   N = 1 

2. Substep Level Loop: m - l,mmax 

iJ"      N 

3. Initialize to Beginning of Step: 

h + l  = h>  bn + ,  = bb 

4. Substep Loop: k = 1,N 

5. Determine Volumetric Form: 

(/>/,)   Linear-Linear           (/</z)   Log-Linear 

6. Iteration Loop: It = l,Itmax 

7. Calculate Residuals and Local Jacobian: R,, R2, *F 

8. Solve for Increment in Variables: AIn+1, Abn+1 

9. Calculate and Test Norm: IF (\\R\\ < Toler,,) 

TRUE:   Go to step 11 

FALSE: Increment variables, In+1, bn+], Go to step 7 

10. Calculate Stresses and Check Substeps:  <T„+/ 

W(k<N)    TRUE: Go to step 4     FALSE: Go to step 12 

11. Compare stresses with previous substep level: 

(l       -L       )< Toler, OR   [It>hm] 

TRUE: EXIT                        FALSE: N = 2N, Go to step 2 



95 

3.5    Plastic Contribution to the Global Jacobian 

Once the plastic step has converged, the plastic contribution to the global Jacobian 

matrix 
(da, 

dAe 
must be calculated. The local Jacobian will be evaluated in terms of the 

ki J n+i 

deviatoric and volumetric components similar to the elastic Jacobian. The volumetric 

component of the Jacobian can be obtained by noting that the residuals are a function of the 

independent variables / and b which, in turn, are a function of the strain increment. The 

derivatives can be obtained by an application of the chain rule: holding the independent 

variables constant and then adding the derivatives with respect to the independent variables. 

At convergence, the residual is equal to zero and the derivatives can be written as: 

dR„ 

dAe, 

dR„ 

klJn+l dAe, 

dR„ 
+ ■ 

/..,.*.. 
dl 

(   dl  A 

,   v dAeu j  , 
b,l + l V « /n+l 

dR„ 
+ ■ 

db 

db 
= 0     (3.5-1) 

Expressed in matrix form: 

' dR{ ' 

dAekl 

dR2 

dAeu 

= ■ 

n+l 

dRx ' 

dAekl 

dR2 

dAeü 

x n+l 

'„,.»,*, 

dl 

dAek 

db 

dAe, 
lol 

n+l 

(3.5-2) 

where      *F = 

dR, dRx~ 

dl 
dR2 

db 
dR2 

dl db. 

Note that the matrix (*F) has been computed in the stress point algorithm (Equation 

3.4-31). Equation 3.5-2 can be rearranged to solve for the derivatives of the independent 



variables with respect to the strain increments. This is given as: 
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dl 

dAek 

db 

dA£u 

[ dR  1 

= -*F:', 

n+l 

dAek 

dR0 

dAe, 

(3.5-3) 

a J /..,.*. 

The derivative of the first residual (Equation 3.4-28) with respect to the strain 

increment (holding the independent variables at the end of the step (In+1, bn+J) constant) is 

dR 

dAe, 
f>7n + \ 

'»,..*„♦. 

dl. n + l 

dAe, 

dl. 
-P 

i.^A.i 
dAe, 

+6(^-p'-Jh dAe, 

i.^A.J 

■su- 
1 dl 

/..,,*, n+1'un+1 
ßAt!n+l dAek 

(7>/;)(3.5-4a) 

I.*,.b. 

dR, 

dAe,, 
= 6rn+l 

/..,A 

dl +1 

dAe, 

dL 

l..,,b. 

+6('- -t».,.,)h dAe, 

dAe,, 

'„,A,i 

'„♦,.*„♦./ (7</,)(3.5-4b) 
1       dl 

kl    ßAtIt dAe, 
L„,b, 

The derivative of the second residual (Equation 3.4-29) is given as: 

dR, 

dAe, 
= 4Gn+lAt^bn+ \ + 2Gn+xAt—Yn+A^ 

dyn+l 
n+l 

/„*,,*. 
dAe, 

'.«!.».*! 

+ 
a-, 

i+2Gn+lAt—y„+A+ 

^2df: 
a, 

n + l 

dAe, 
/..,,*.. 

<?Ag„ 
'.♦,.*„♦, 

-2Gn+IArJ^- 
<?Aew 

£/„2 

/..,,*.. dtea 

(3.5-5) 

/„,,*.. 
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The derivative of the plasticity parameter with respect to the strain increment is 

given by: 

<?7„+i 1 (dF-         dF        .2   )dKp^dJll 

[dl  n+l    dJ2  n+1 n+l)   dJ    dAekl dAekl 

+- 
1 

K 

+- 
2 

1 dF   dl 

K 

At dl dAe, 

^   _p
9k 

+ dF b     dJ2
n+l 

a/2 n+idAs, 
K^A.J 

dAe,,      dAe p„+i \ULyc-ki 

ln+l 
klj 

(3.5-6) 

Additional derivatives required for Equations 3.5-4 through -6 are given as: 

dl n + l 

dAe, cM~.& 
'„♦,.*„♦, 

dAe, 
L.,.b„ 

(3.5-7) 

dl +i 

<?A£, 

(4+1-cO *„ 

',.,.*.,i 
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The derivative of the deviatoric stress at time tn with respect to the increment in 

strain 
KdAeuJn 

in Equation 3.5-14 is known from the previous substep. If the previous 

substep was elastic, the derivative is calculated via Equation 3.3-4. 
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The derivative of the deviatoric stress at the end of the step (tn+J) is obtained by 

differentiating Equation 3.4-20 by the strain increment. This derivative is given as: 

f_ds1L 

v dAe,,, ,   , 
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Note that this derivative requires the derivatives 
dl 

dAe 
and 

'  db  ^ 

kl )n+\ 
dAe kl Jn+l 

calculated in Equation 3.5-3. Also, a number of the derivatives are taken at time tn (i.e., 

values found at the end of the previous substep and saved). When substepping is used in 

the stress point iteration, it also must be used in the evaluation of the local Jacobian. The 

same substep level is used for both the calculation of stress and the local Jacobian. As 

described in Section 3.4, the independent variables / and b are saved at the end of each 

substep. The local Jacobian is constructed by recalling these values to calculate the current 

substep tn+1 derivatives. These current values are reserved and used in the calculation of 

the derivatives at time tn+2, etc. For steps that transition through the elastic zone, the first 

substep requires values calculated at the boundary of the elastic nucleus (Equations 3.3-4 

and 3.3-9). At the end of the substepping, both the volumetric and deviatoric components 

are combined to provide the local contribution to the global Jacobian. 
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3.6  Unloading 

For each global step, it must be determined whether the step is loading (elastic or 

plastic) or unloading (elastic). One common approach, especially useful when a predictor 

stress is calculated, is to cross the stress increment with the normal to the function surface 

(i.e., the loading index). A positive value indicates loading and a negative value indicates 

unloading. The loading index is given as: 

L = ^-Acr (3.6-1) 
No- 

where     L = loading index (L > 0, loading; L < 0 unloading). 

Another approach, similar to the elastic case, is to determine whether there are any 

positive roots when calculating the intercept to the loading surface. This approach 

additionally provides the terms necessary to calculate the length of the elastic unloading 

step. Equation 3.2-18 can be rewritten as: 

F = q2f
2(t) + q]f(t) + q0=0 (3.6-2) 

where      q2=b c, 

c^^{2Gh)
2
%l+(ßAeg(I)f 

qi =b2c2 +bc3 

c2=^2Ga2+2ßAeg(l)Ih-2IcßAdg(l) 
a. 

c,=2ßA0g(I)(lc-pIo^ 

2 qQ - b c4+bc5+c{ 6 
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a2 

^-2(lc-pI0iJln-2Ic(lc-pI0J 

c6 = I?-2pIcI0^ + 
( 1A 

ll 

Similar to the elastic case, assume that t in Equation 3.6-2 can take on any value 

(t**). The loading surface intercept is defined by using the current value ofb = bn and 

solving for the value of/in Equation 3.6-2. Defining/** =f(t**), the solution is: 

^^^ig^. (3.6.3) 
2<?2 

One root is always near zero (since the current stress point is on the loading 

surface) and the other will be either positive (indicating an intercept with the loading surface 

and therefore unloading) or negative (which indicates loading). Therefore, the root with 

the larger absolute magnitude is tested for its sign: 

n   3   /„= max(|/r|,|/2"|) (3-6-4) 

where     /„** > 0 => unloading 

f** < 0 =» loading. 

If the test determines that unloading is occurring, the length of the unloading step 

must be calculated. Consider an unloading stress path as shown in Figure 3.6-1. Initially 

the loading surface shrinks or unloads until the stress path becomes tangent with the 

surface. At this point the surface begins to grow and loading begins. Now if b is treated 

as an unknown in Equation 3.6-3, we can determine at what value of b the two roots will 

be the same, thus defining the loading surface just tangent to the stress path. The roots are 
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the same when the radical term in Equation 3.6-3 goes to zero (i.e., q2 -4q2qQ = 0). This 

yields an equation for b using the terms calculated in Equation 3.6-2: 

b2[b2q5+bq4+q3] = 0 (3.6-5) 

where      q3 = c2 -4c,c6 

45=c2
2-4c,c4. 

Noting that the definition of b requires that it be greater than one, the two zero roots 

are discarded. The quadratic in the square brackets is solved for bmin where the loading 

surface is a minimum: 

= -q4±^ql-4q5q3 
mm 2q5 

Because the loading surface is described in J2 space (i.e., the square of the 

deviatoric stresses), one root will be positive and the other will be negative. Again, 

because the definition of b requires that it be greater than one, the positive root is taken. 

The value of bmin can be substituted for b into Equation 3.6-2 and a new/** is determined 

(Equation 3.6-3) which yields the length of the unloading step (sunloail). The calculation of 

the behavior of the unloading step is the same as described for the elastic step calculation 

(Equations 3.2-26). Solving for b first is advantageous because if the minimum falls 

within the elastic surface (i.e., bmin > belastic), the elastic intercept can be easily calculated by 

substituting b = bdastic. The flow chart for determining the elastic unloading step is shown 

in Figure 3.6-2. 
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Bounding Surface 

Figure 3.1-1. Bounding Surface in Two-Invariant Space. 
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Figure 3.2-1. Volumetric Stress versus Void Ratio Relationship. 
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Figure 3.2-2. Possible Roots for the Intersections of the Elastic Surface. 
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Calculate elastic step 
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no elastic step 
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elastic step calculated 
go to plastic step if step < 1 

Figure 3.2-3. Elastic Step Flow Chart 
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Figure 3.6-1. Typical Unloading Path. 
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Figure 3.6-2. Elastic Unloading Flow Chart 
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4. Example Calculations 

4.1  Problem Descriptions 

Comparisons of predictions for a number of sample problems were made using the 

three methods: 1) trapezoidal (Trap), 2) Closest Point (CP), and 3) Reduced Newton 

(RN), in order to determine their behavior. This comparison section is divided into three 

sections:  1) comparison of the methods without substepping starting on the bound, 2) 

comparison of the methods without substepping starting inside the bound and 3) 

comparison of the methods with substepping. Substepping involves uniformly 

subdividing the strain increment within the material model subroutine and solving for the 

stress as a cumulative sum of the incremental stresses from each substep. 

Section 4.2 compares the methods without substepping and provides a general 

description of how each method behaves. Because the convergence criterion for the 

iterations of each of the methods is different, comparison of computational times is 

meaningless. The methods are compared at 1, 2, 4 and 100 global steps. There is a 

difference between taking N substeps across the interval as compared to taking N global 

steps. The histories of the various strain components are generally not proportional. When 

N global steps are used, this nonproportionality is taken into account (i.e., £ij/ekl = /(f)). 

In contrast, the use of N substeps approximates the strain histories as proportional 

(i.e., eiJ/£kl= constant). 

For points that start on the bound, the "exact" solutions are established by assigning 

an arbitrary change in state and calculating (using numerical integration with a very tight 

tolerance) the corresponding strains. The strains for the intermediate steps are also 

determined by integration. The strain calculations are given in Appendix C. 
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Section 4.3 considers stress points that start within the bound. Since no "exact" 

strains were calculated, an arbitrary strain increment was chosen. The trapezoidal solution 

for 100 uniform global steps is assumed to be nearly exact for comparison purposes. 

Section 4.4 compares the methods with uniform substepping within the algorithm. 

A common convergence criterion is established for the substepping, therefore comparison 

of computational times is made possible. The criterion used is defined in Equation 3.4-59. 

A set of strain increments is chosen for each problem and the algorithm is allowed to 

uniformly substep as required to meet the substepping convergence criterion. 

4.2  Comparison of Methods for Stress Points on the Bound (no 

substepping) 

Several tests were performed to compare of the behavior of the methods for stress 

points initially on the bound. The Bounding Surface parameters used for these tests are 

given in Table 4.2-1. Discussion of the parameters is given in the references [Herrmann 

and Mish, 1983b and Kaliakin, 1985]. 

Table 4.2-1. Bounding Surface Parameters for Stress Points on the Bound. 

X K M V h R 

0.14 0.05 1.05 0.2 14.7 (psi) 2.6 

4.2.1  Volumetric Compression Test 1 

A simple compression test along the volumetric axis was analyzed using the three 

methods. The problem data is given in Table 4.2.1-1. The "exact", Trap, CP and RN 

results are given on Tables 4.2.1-2, 4.2.1-3, 4.2.1-4 and 4.2.1-5, respectively. The Trap 

method provides reasonable results at one step with a slight improvement as the number of 
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Steps increases. Because the CP and RN methods treat the volumetric behavior separately, 

they achieve the exact answer within a few iterations. 

4.2.2 Volumetric Tension Test 

Similar to the compression test, a simple tension test along the volumetric axis was 

also performed. The problem data and the "exact" results are given in Table 4.2.2-1 and 

4.2.2-2, respectively. The first attempt using the Trap method is shown in Table 4.2.2-3. 

The solution is wrong and does not improve, even with 100 steps. The problem lies in the 

implementation of the hardening rule (Section 1.5). In the previous work [Kaliakin, 

1985], the hardening rule was broken into a linear-linear and log-linear section similar to 

the volumetric stress behavior (Section 1.3). As strain developed for a given stress path 

(Appendix C, Section C.l), the amount of tensile volumetric strain that this form of the 

hardening rule could tolerate was limited. Simplifying the hardening rule to the log-linear 

form improved the performance, although a large number of steps were required to achieve 

a reasonable answer (see Table 4.2.2-4). In contrast, the CP and RN methods exhibited 

accurate results with one step (see Tables 4.2.2-5 and 4.2.2-6). 

4.2.3 Shear Test 1 

A shear test was designed so that the stress is initially on the volumetric stress axis 

and travels in the direction of the second stress invariant (/) while keeping the first invariant 

(I) constant. The problem data is given in Table 4.2.3-1. The results for the Trap, CP and 

RN methods are shown in terms of 7 and the hardening (i.e., the bound size, I0) in Figures 

4.2.3-1, 4.2.3-2 and 4.2.3-3, respectively. The Trap method shows the largest error at the 

larger strain increments, which can be expected since the integration does not explicitly 

satisfy the consistency condition at the end of the step (i.e., maintaining F = 0). The error 

manifests itself in larger shear stresses and less hardening than the "exact" stress path. 

This behavior indicates that the final stress point is outside of the Bounding Surface. The 
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CP and RN methods show similar behavior because they both are Newton-Raphson 

methods that explicitly satisfy the consistency condition at the end of the step. Although 

there is some error for the larger strain increments, the stress points fall close to the "exact" 

stress path. The convergence from below the "exact" path indicates points falling within 

the bound. 

4.2.4  Shear Test 2 

Shear Test 1 is now modified so that the stress begins some distance from the 

volumetric axis (i.e., J = 0), but still on the bound. This data is given in Table 4.2.4-1. 

The Trap (Figure 4.2.4-1) again shows larger shear stresses and less hardening than the 

"exact" stress path for large strain increments. For smaller strain steps, however, the Trap 

method exhibits somewhat better accuracy. The CP and RN methods (Figures 4.2.4-2 and 

4.2.4-3) show virtually the same behavior and converge from the opposite side than the 

Trap method. 

4.3  Comparison of Methods for Stress Points inside the Bound (no 

substepping) 

Several tests were conducted for comparison of the behaviors of the methods for 

stress points initially inside the bound. The Bounding Surface parameters used for these 

tests include those for points on the bound (given in Table 4.2-1) and the parameters 

defining behavior within the bound (given in Table 4.3-1). Discussion of these parameters 

is given in the references [Herrmann and Mish, 1983b and Kaliakin, 1985]. 

Table 4.3-1. Bounding Surface Parameters for Stress Points within the Bound. 

ratm C SP 
m Hc H0 a w 

14.7 psi 0.28 0 0.02 4.0 4.0 1.2 5.0 
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4.3.1 Volumetrie Compression Test 2 

A simple strain-controlled compression test along the volumetric axis is described in 

Table 4.3.1-1. No "exact" solution was calculated (i.e., a stress path is assumed and the 

corresponding strains calculated) so the Trap solution using 100 steps was assumed to be 

the actual answer. The Trap, CP and RN results are given in Tables 4.3.1-2, 4.3.1-3 and 

4.3.1-4, respectively. All of the methods provided reasonable results at one step and a 

slight improvement as the number of steps increased. 

4.3.2 Shear Test 3 

A shear test was analyzed that starts the stress on the volumetric axis and moves 

mostly in the second stress invariant (J) direction. The problem data is given in Table 

4.3.2-1. The results for the Trap, CP and RN methods are shown in terms of / and IB in 

Figures 4.3.2-1, 4.3.2-2 and 4.3.2-3, respectively. The Trap method shows greater shear 

stress and less hardening for the larger strain increments. The CP and RN methods, while 

having significant error for the large strain increments, show end points that fall on the 

actual stress path. 

4.3.3 Shear Test 4 

Shear Test 3 is now modified so that the stress begins some distance from the 

volumetric axis (i.e., J = 0). This data is given in Table 4.3.3-1. The Trap method (Figure 

4.3.3-1) for this test actually shows the best behavior converging on the "exact" stress path 

within two steps. The CP and RN methods (Figures 4.2.4-2 and 4.2.4-3) show poorer 

accuracy and converge to the "exact" answer from the opposite side than the Trap method. 
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4.4  Comparison of Methods with Substepping 

The Bounding Surface parameters used for the substepping tests are given in Tables 

4.2-1 and 4.4-1. The only difference from the solutions inside the bound (Section 4.3) is 

that a small elastic nucleus has been introduced (e.g., sp = 3.0). 

Table 4.4-1. Bounding Surface Parameters used for Substepping Tests. 

ratm C SP 
m Hc H0 a w 

14.7 psi 0.28 3.0 0.02 4.0 4.0 1.2 5.0 

The substepping used for this study is a linear subdivision of the strain increment 

(i.e., dividing the strain increments by two) up to a level of 32 (i.e., 25) equal substeps. 

The substepping levels and number of steps are given in Table 4.4-2. 

Table 4.4-2. Substep Levels versus Number of Substeps. 

Substep Level, m 1 2 3 4 5 6 

Number of Equal Substeps 1 2 4 8 16 32 

The convergence criterion used to stop substepping in this study is the percentage 

of change in the predicted final Bounding Surface size. This was defined in Equation 3.4- 

60 and is given by: 

(3.4-60) I       -I        )<Toler,      OR   \lt>ItmJ\   THEN:   EXIT 
»n+i,m °»+i.m-i / '« J L maxji 

The methods iterate on the solution for each strain level produced by the 

substepping until the iteration criterion is satisfied. At the end of each substepping process, 

the Bounding Surface size (70) is compared to the value found with the previous 
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substepping. When the change in the bound size is below the specified tolerance, the 

results are printed. The tolerance used for this study was 0.001 psi. 

4.4.1  Nearly Elastic Compression and Shear 

A test was designed to start within the elastic nucleus and project out into the plastic 

realm. The initial stress is located on the volumetric axis (i.e., /= 0) near the projection 

center so a large part of the path is elastic. This data is given in Table 4.4.1-1. The stress 

path in / - J space is shown in Figure 4.4.1-1. The "exact" solution uses the Trap method 

and 100 linearly interpolated global strain increments. 

The Trap and RN methods show nearly identical results and nearly give the "exact" 

solution. The CP method shows significant error in the stress path. This error is caused 

by the inaccuracy of the rate equation for the stress distance measure (b) near the elastic 

surface. 

The computational time of the methods were compared with the codes compiled 

with Language Systems FORTRAN on a Macintosh Centris 650. The times are compared 

on a relative scale with the Trap method time used as the base (i.e., the Trap method is 

always one). The relative speeds and substepping are shown in Figure 4.4.1-2. Although 

the Trap and RN methods show nearly identical results, the Trap method shows the best 

behavior converging on the "exact" solution in less time and fewer substeps. This is to be 

expected since it is a second order method and is most appropriate for nearly elastic 

calculations. Also, the RN and CP methods converge in the same number of substeps, but 

the CP method takes significantly longer. This is a result of the second order derivatives 

that need to be calculated every iteration. In addition, each iteration of the CP method must 

solve nine simultaneous equations while the RN method only solves two. Another 

difficulty with the CP method is the use of the rate equation for b (Equation 1.7-11) which 

is a function of the hardening modulus (K). As the hardening modulus approaches the 

elastic surface it rapidly goes to infinity (see Equation 1.6-4). The behavior of the 
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hardening modulus and the b rate equation is shown in Figure 4.4.1-3. For stress points 

near the elastic surface, the use of Equation 1.7-11 actually slows convergence because of 

the large gradient. 

4.4.2 Plastic Compression and Shear 

A plasticity test was designed to start near the bound and project out into the plastic 

realm. The initial stress is located off the volumetric axis (i.e., J = -3.6 psi) near the bound 

so a significant portion of the path is on the Bounding Surface. This data is given in Table 

4.4.2-1. The stress path in / - J space is shown in Figure 4.4.2-1. 

All of the methods show results close to the "exact" solution. The CP method 

shows slightly more error than the other methods. 

The relative times are shown in Figure 4.4.2-2, and for the Trap and RN methods 

they are almost the reverse of what was observed in Section 4.4.1. The RN method shows 

about a 50% decrease from the Trap method. The CP and RN methods were developed to 

account for plasticity and show improved performance by converging in fewer substeps. 

Again, because of the calculation of the second order derivatives in the CP method, the 

relative time is significantly higher. 

4.4.3 Shear Softening 

A shear test in the softening realm was designed to start on the bound. Volumetric 

strains were prescribed to keep the volumetric stress nearly constant. This data is given in 

Table 4.4.3-1. The stress path ml - J space is shown in Figure 4.4.3-1. 

All of the methods show results close to the "exact" solution. The CP and RN 

methods show slightly more error than the Trap method, but this is small (note the scale of 

the /-axis). 

The computational times are shown in Figure 4.4.3-2. The CP and RN show a 

larger number of substeps for convergence, yet the RN method took less time than the Trap 
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method with fewer substeps. Again, because of the calculation of the second order 

derivatives in the CP method, the relative time is significantly higher. 



117 

Table 4.2.1-1. Compression Test 1 -Parameters 

J     a 
/„ = 81 (psi), e„ = 0.94 

G„ = <^22 - G33 = -27 psi, o12 = ol3 = G23 = 0 

Ae„ = Ae22 = Ae33 = -2.80025xl03, Ae12 = Ae13 = Ae23 = 0 

Table 4.2.1-2. Compression "Exact" Results. 

/ h b 

91 91 1 

Table 4.2.1-3. Compression Test 1-Trapezoidal Results. 

Number of Steps I h b 

1 90.9799 91.0101 0.9996 

2 90.9894 91.0012 0.9997 

4 90.9968 90.9980 1.0000 

Table 4.2.1-4. Compression Test 1-Closest Point Results. 

Number of Steps / h b 

1 91.0000 91.0000 1.0000 

Table 4.2.1-5. Compression Test 1-Reduced Newton Results. 

Number of Steps / h b 

1 91.0000 91.0000 1.0000 



Table 4.2.2-1. Tension Test Parameters. 
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/„ = 0.9 psi, e„ = 0.94 

a„ = a2, = a33 = -6.92308x 102 psi, a12 = a13 = a23 = 0 

Ae„ = Ae22 = Ae33 = 9.15692xl03, Ae12 = Ael3 = Ae23 = 0 

Table 4.2.2-2. Tension "Exact" Results. 

/ h b 

-2.07692xlCr2 0.5 1 

Table 4.2.2-3. Tension Test Trapezoidal Results before I0 Fix. 

Number of Steps / K b 

1 2.0965 0.0010 ~0 

Table 4.2.2-4. Tension Test Trapezoidal Results with l0 Fix. 

Number of Steps / K b 

1 2.0965 0.6408 ~0 

2 -3.0007 0.6413 0.0493 

4 -1.6303 0.6161 0.0872 

100 -0.1629 0.5048 1.0000 

Table 4.2.2-5. Tension Test Closest Point Results. 

Number of Steps / K b 

1 -0.1145 0.4961 1.0000 

Table 4.2.2-6. Tension Test Reduced Newton Results. 

Number of Steps / h b 

1 -0.1145 0.4961 1.0000 
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Table 4.2.3-1. Shear Test 1-Parameters. 

/„ = 81psi.fi,, = 0.94 j    4 

a,, = a22 = a„ = -27 psi, a]2 = G,3 = G23 = 0 

Ae,,=Ae22=Ae33= -1.80016xl03, Ael2 = -1.14129x10% Ae13=Ae23= 0 
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Figure 4.2.3-1. Trapezoidal Shear Test 1-Results. 

4 

3 

2 

1 

81 

:   ' 1 1 
'    !    ' 

1 1 1      !     '      !      '      !      '    : 

: 
^- - _, — 

Tp^r^ T1^ "V 
; 

tff'' *■* Z-\"   ~ - •-  - 1 Step 
- - ■ - - 2 Steps       : 
- - ♦ - - 4 Steps       : 

• X    - 100 Steps    : ~-^& 
i&V^ ,'' '' ^-\" "" 

— 
^U^ i— 1 1 I    i    , I I i 1     i     1     i     i     i 

83 85 87 89 91 

Figure 4.2.3-2. Closest Point Shear Test 1-Results. 
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Figure 4.2.3-3. Reduced Newton Shear Test 1-Results. 



Table 4.2.4-1. Shear Test 2-Parameters. 
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/„ = 60 psi, e„ = 0.94 

a,, = c22 = CT33 = -18 psi, al2 = 3.63731 psi, a13 = a23 = 0 

Ae11=Ae22=Ae33= -2.38377x10"', Ae,2 = -1.77091x10"2, Ae13=Ae23= 0 
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Figure 4.2.4-1. Trapezoidal Shear Test 2-Results. 
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Figure 4.2.4-3. Reduced Newton Shear Test 2-Results. 



Table 4.3.1-1. Compression Test 2-Parameters. 
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/„ = 81(psi),eo = 0.94 

o",, = o22 = o33 = -15 psi, a,2 = aI3 = o23 = 0 

Ae,,"= Ae22 = Ae33 = -l.OxlO"3, As,2 = Ae13 = As23 = 0 

Table 4.3.1-2. Compression Test 2-Trapezoidal Results. 

Number of Steps / h b 

1 48.8177 82.5852 2.3143 

2 48.8186 82.5874 2.3143 

4 48.8188 82.5878 2.3143 

100 48.8188 82.5879 2.3143 

Table 4.3.1-3. Compression Test 2-Closest Point Results. 

Number of Steps / h b 

1 48.6779 82.7207 2.3342 

2 48.7452 82.6572 2.3245 

4 48.7855 82.6193 2.3193 

100 48.8173 82.5894 2.3145 

Table 4.3.1-4. Compression Test 2-Reduced Newton Results. 

Number of Steps / h b 

1 48.7494 82.6532 2.3240 

.    2 48.7877 82.6172 2.3186 

4 48.8017 82.6040 2.3167 

100 48.8182 82.5885 2.3144 



Table 4.3.2-1. Shear Test 3-Parameters. 
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/„ = 81 psi, e„= 0.94 

on = G22 = o33 = -15 psi, al2 = a13 = a23 = 0 

Ae,,=A£22=Ae33= 0, Ae,2 = -l.OxlO"2, Ae13=Ae23= 0 

Figure 4.3.2-1. Trapezoidal Shear Test 3-Results. 
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Figure 4.3.2-2. Reduced Newton Shear Test 3-Results. 



Table 4.3.3-1. Shear Test 4-Parameters. 
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7„ = 81 psi, e„ = 0.94 

c?,i = ö22 = G33 = -15 psi, c12 = -2.0 psi, o,3 = G23 = 0 

Ael,=A£22=Ae33= 0, Ae,2 = -l.OxlO2, Ae,3=Ae23= 0 
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Figure 4.3.3-3. Reduced Newton Shear Test 4-Results. 
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Table 4.4.1-1. Nearly Elastic Compression and Shear Test-Parameters. 

J    k- 

/„ = 81 psi, e„ = 0.94 

a,, = a22 = c33 = -10 psi, ai2 = a]3 = a23 = 0 

Ae,,=Ae22=Ae33= -1.0x10% Ae12 = l.OxlO"2, Ae,3=Ae23= 0 
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I 

Figure 4.4.1-1. Nearly Elastic Test Stress Path. 
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Bounding Surface 
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Figure 4.4.1-3. Hardening Modulus and b Rate Behavior Along I-Axis. 



Table 4.4.2-1. Plastic Compression and Shear Test-Parameters. 
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/„ = 60 psi, e„ = 0.94 

on = a22 - a33 = -15 psi, a12 = -3.6 psi, a13 = a23 = 0 

Ae,,= 2.0xl0'2, Ae22= -4.0xl0"2, Ae„= -l.OxlO"2, 

Ael2 = -3.0xlO":, Asl3=Ae23= 0 
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Table 4.4.3-1. Softening Shear Test-Parameters. 

7„ = 81 psi, e„ = 0.94 

a,, = a22 = a33 = -4 psi, c12 = -5.81202 psi, aI3 = a23 = 0 

Ae„= Ae22= Ae33= -2.03767x10'3, As12 = -3.632453xl0"2, 

Ae13=Ae23= 0 
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Figure 4.4.3-1. Softening Shear-Test Stress Path. 
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5.  Constitutive Model Implementation 

Constitutive models are generally designed to be implemented within finite element 

programs. The manner in which these programs solve the global nonlinear problem 

dictates the requirements of the constitutive model. For this study, the implementation will 

be in a program which uses the Newton-Raphson method for nonlinear solutions. The 

DYSAC2 finite element computer program is a dynamic analysis code for soils and was 

written at the University of California at Davis [Muraleetharan, et. al., 1991]. 

This section will be divided into two parts: 

1) discussion of the issues of interfacing a constitutive model into a typical finite 

element program that uses the Newton-Raphson method, and 

2) results of implementing the Bounding Surface model for clays into the DYS AC2 

program. 

5.1   Standard Interface 

The development of a "standard" interface for constitutive models creates a conflict 

between modular programming and the means for convenient debugging (for an analyst to 

debug a "bad" solution as opposed to the debugging required for implementing a 

constitutive model). These two opposing philosophies dictate the level of information that 

should be provided through the constitutive model interface. Modular programming 

requires the minimum amount of information in the interface, whereas debugging often 

requires more. 

Modular programming is based on a "need-to-know" philosophy and provides only 

the information required to perform its function. The benefit of this minimal interface is 

that it prevents additional information (especially in weakly-typed languages, such as 

FORTRAN) from being corrupted. It also provides the easiest means for adding new 

constitutive models to existing programs because the user is not required to track the 

meaning of extraneous variables. 
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Convenient debugging, on the other hand, requires a great deal of information that 

is never used within the constitutive model. The information is needed for tracking the 

cause of the problem in the event of a numerical failure within the model. When a 

constitutive model fails (e.g., does not converge) the user can extract information (such as 

the integration point, element, iteration and time step numbers) to determine whether an 

input parameter was specified wrongly or simply that the mesh was not detailed enough in 

a particular area. This information, however, is not required for the execution of the 

constitutive model. 

In order to provide the best of both philosophies, two interfaces are proposed: 

1) the constitutive branching routine, and 

2) the standard constitutive model. 

The constitutive branching routine is generally called from the integration point 

routine and contains the logic for deciding which material set belongs to the element. The 

constitutive model can be called from five separate areas in the program during the analysis 

phase (depending on the program's architecture): 

1) reading of constitutive properties, 

2) initialization of internal variables, 

3) stresses and tangent moduli calculation during the Newton-Raphson iteration, 

4) updating internal variables, and 

5) stress reporting. 

Often the updating is merely the swapping of a temporary and permanent internal 

variable array, and stress reporting is accessing the stored stresses. At this level, sufficient 

debugging information should exist to track a numerical problem in the constitutive array. 

The branching routine is proposed to have both debugging and constitutive information 
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with an interface defined as: 

branching routine   (analysis phase, time step number, iteration 

number, element number, integration point 

number, constitutive  information) 

The constitutive properties and the initial values of the internal variables are 

obtained during the reading phase. This step is done once for each separate material type 

and often doesn't go through the branching routine (since element information is not 

required for debugging). A typical read routine interface is defined as: 

read routine    (properties, internal variables) 

output: 

properties = constitutive property array 

internal variables = internal variable array. 

The constitutive information required will be defined by the initialization and 

Newton-Raphson iteration requirements. A typical initialization routine interface is: 

initialization routine    (properties, initial stresses, internal variables, 

external variables) 

input: 

properties = constitutive property array 

initial stresses = initial stress state array 

external variables = external variable array 
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output: 

internal variables = internal variable array. 

During the Newton-Raphson iteration, the constitutive routine should produce the 

change in stress, tangent moduli and the change in internal variables given, the constitutive 

model properties, initial stresses, existing strains, internal and external variables and the 

increment in strain. The routine should be written so that when numerical errors occur (or 

are about to occur) they are trapped and it exits to the branching routine where the error and 

necessary debugging information can be reported. This is known as defensive 

programming and prevents the code from crashing within the constitutive routine where no 

debugging information is available. A typical constitutive routine interface is defined as: 

constitutive  routine  (properties, strains, strain increment, 

stresses, internal variables, external variables, 

tangent moduli, error, convergence information) 

input: 

properties = constitutive property array 

strains = existing strain array 

strain increment = new strain increment array 

input and output: 

stresses = previous stress state array (overwritten with the new stresses) 

internal variables = internal variable array (overwritten with new array) 

external variables = external variable array (possibly overwritten) 
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output: 

tangent moduli = the stress - strain gradient, matrix 

error = convergence errors 

convergence information = whether or not convergence occurred. 

The external variables (e.g., temperature, T) are often input only. If the analysis is 

coupled with these variables, the main program might also require additional gradients 

d(flux) „„,, ^ associated with them to be defined e.g., —  and 
S        de ofT 

As shown above, the stress and internal variable arrays are overwritten. Often a 

temporary array is maintained for both the stresses and internal variables. Once the global 

solution has converged, then the updating simply consists of copying the temporary array 

into the permanent array. If the temporary arrays need to be maintained at the global level, 

separate arrays of the previous and new values can be specified at the interface. This 

allows for faster global updating (i.e., a single loop over all of the update arrays without 

going down to the element level) and easier restart capabilities. The constitutive routine 

interface can now be defined as: 

constitutive  routine  (properties, strains, strain increment, 

previous stresses, previous internal variables, 

previous external variables, new stresses, 

new internal variables, new external variables 

tangent moduli, error, convergence information) 



133 

input: 

previous stresses = previous stress state array 

previous internal variables = previous internal variable array 

previous external variables = previous external variable array 

output: 

new stresses = new stress state array 

new internal variables = new internal variable array 

new external variables = new external variable array 

When temporary arrays are used, stress reporting at the integration points becomes 

a matter of simply printing the stress array. Calculation of stresses at other points within 

the element (e.g., node points) is generally done at a global/element level (i.e., curve 

fitting) in order of average element contributions to common points. A graphical 

representation of this interface is given in Figure 5.1-1. The dotted lines indicate calls that 

the main program can make directly without going through the branching routine. 

5.2 Application of the DYSAC2 Program to an Embankment Subjected to 

an Earthquake 

In order to evaluate the performance of the Reduced Newton version of the 

Bounding Surface clay model (Section 3), the model was implemented into the DYSAC2 

finite element computer program [Muraleetharan, et. al, 1991]. DYSAC2 is a dynamic 

soil analysis code for two-dimensional plane strain problems that fully couples the 

governing equations of a saturated porous media (two phase). The implementation was 

made in accordance with the "standard interface" discussed in the previous section. 

The problem chosen for the evaluation of the numerical model involves an earthen 

clay embankment subjected to an earthquake. The embankment was previously analyzed 
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using DYSAC2 (with base shaking) using the three-surface clay model with trapezoidal 

integration and comparing the results to the centrifuge results [Muraleetharan, et. al., 

1994]. For this study, the single-surface model (ellipse) was used with the properties 

given in Table 5.2-1 using both the trapezoidal and Reduced Newton integrations. A more 

detailed description of the parameters is given in an earlier publication [Herrmann and 

Mish, 1983b]. The interest here is not to compare the results to the centrifuge test results 

(although a direct comparison to the experimental results indicates a slight improvement in 

accuracy), but to compare the performance of the Reduced Newton integration to the 

trapezoidal integration. The finite element dicretization is shown in Figure 5.2-1. 

The centrifuge model was spun up to 80g, allowed to consolidate and then 

subjected to base motion. The initial stresses (created by the centrifuge spin up) in the 

finite element model were calculated using SAC2 [Herrmann and Mish, 1983c; Herrmann 

and Kaliakin., 1987b]. Since the current version of DYSAC2 does not have this 

capability, the initial stresses were graciously provided by Dr. Muraleetharan. DYSAC2 is 

then used to calculate the embankment response to the base motion. The input base 

acceleration is shown in Figure 5.2-2. 

The comparison of the embankment predictions using the trapezoidal and Reduced 

Newton methods can be evaluated by looking at various nodal and element responses. The 

analysis used 1,008 time steps with a time increment of 1.5625xl0"4 seconds. An 

additional analysis was performed using the trapezoidal method, but with twice the number 

of steps (Trapezoidal x2), for accuracy comparisons. The horizontal and vertical 

accelerations and displacements are shown in Figures 5.2-3 and 5.2-4, respectively. The 

accelerations of all three analyses match extremely well. The displacements show a slight 

discrepancy near the end of the analysis, with the Reduced Newton method closely 

following the more accurate trapezoidal run. Excess pore water pressure histories for 

selected elements are shown in Figure 5.2-5, and show a similar variation with the 

Reduced Newton being more accurate. Contour plots of the excess pore water pressure for 
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both methods are shown in Figure 5.2-6 and indicate little difference between the two 

methods. The times as recorded on a PowerMac 8100/100 are given in Table 5.2-2 and 

shows the Reduced Newton method slightly faster. The global iterations per step are 

shown in Figure 5.2-7 and the results are quite similar. 

5.3 Application of the DYSAC2 Program to an Embankment Subjected to a 

Shock 

Another analysis was conducted of the clay embankment with a shock applied at the 

base. The same material properties were used and are given in Table 5.2-1. The model 

was analyzed at the same 80g level (created by the centrifuge) so that the same initial 

conditions could be used. The base shock is shown in Figure 5.3-1. 

The analysis used 5,000 time steps with a time increment of 5.0xlO"5 seconds. 

Similar to the earthquake study, an additional analysis was performed using the trapezoidal 

method, but with twice the number of steps (Trapezoidal x2), for accuracy comparisons. 

The horizontal and vertical accelerations and displacements are shown in Figures 5.3-2 and 

5.3-3, respectively. The accelerations are shown for the first 0.1 second for clarity and all 

of the methods match extremely well. The displacements show a slight divergence near the 

end with the trapezoidal and Reduced Newton methods drifting slightly from the more 

accurate Trapezoidal x2 analysis. Excess pore water pressure histories for selected 

elements are shown in Figure 5.3-4 and show results similar to the displacements. 

Contour plots of the excess pore water pressure for both methods are shown in Figure 5.3- 

5 and indicate little difference between the methods. The times as recorded on a PowerMac 

8100/100 are given in Table 5.3-1 and show the Reduced Newton method to be slightly 

faster. 



Table 5.2-1. Bounding Surface Model Parameters. 
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Parameter Description Value 

X Slope of virgin compression line 0.25 

K Slope of swell/compression line 0.05 

Mc Slope of critical state (triaxial space) 0.88 

Me/Mc Ratio of CSL slopes extension to compression (3D only) 1.0 

V Poisson's ratio or shear modulus 0.3 

// Transition / for log to linear 101.4 kPa 

raim 
Atmospheric pressure 30.4 kPa 

R Shape of bounding surface 2.4 

C Projection center parameter 0.0 

SP 
Elastic zone parameter 1.0 

m Exponent for shape hardening function 0.02 

Hc 
Hardening parameter associated with compression 3.0 

H/Hc Ratio of hardening parameters, ext/ comp (3D only) 1.0 

H0 
Hardening parameter associated with I axis 2.0 

a Parameter controlling magnitude of hardening 1.2 

w Parameter controlling decrease of hardening 5.0 
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Table 5.2-2. Embankment Subjected to an Earthquake Timing Results. 

Method Time (sec) Time (min) 

Trapezoidal 3252 54.2 

Reduced Newton 3223 53.7 

Table 5.3-1. Embankment Subjected to a Shock Timing Results 

Method Time (sec) Time (min) 

Trapezoidal 12052 200.9 

Reduced Newton 11789 196.5 
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6. Conclusions and Recommendations 

6.1  Conclusions 

The Bounding Surface Plasticity theory provides a means to gradually transition 

from elastic to plastic behavior within a plasticity setting. Other approaches using multi- 

surface plasticity have been proposed to achieve the same behavior [Mroz, 1967; Krieg, 

1975; Eisenberg and Phillips, 1971]. This capability is especially useful in cyclic loading 

cases where the change in volume occurs gradually over a number of cycles. Classical 

plasticity models consist of a yield surface defined in stress space where stress paths within 

the surface are elastic and paths on the surface are plastic. Cyclic behavior that occurs 

within the surface is elastic and can never generate the observed plastic behavior. Unlike 

classical plasticity models, the surface defined in a Bounding Surface model is a bound 

rather than a yield surface and therefore allows plasticity to occur within the surface, not 

just when the stress path reaches it. This feature presents difficulties when trying to 

implement the model using conventional numerical techniques which were developed for 

yield surface models. 

This study investigates numerical techniques for specifically implementing the 

Bounding Surface model for clays. The first goal was to lay out the Bounding Surface 

theory in a framework that would allow implementation using conventional numerical 

methods. Section 1.7 describes an approach that explicitly defines the loading surface in 

terms of an additional internal variable so that the model fits the conventional plasticity 

framework. 

The Closest Point Projection method (Section 2) is one of the modern techniques 

for numerically evaluating conventional plasticity models. The use of an elastic predictor 

and a plastic corrector makes it very well suited for yield surface plasticity that has distinct 

elastic and plastic zones. Adding an additional internal variable and the loading surface rate 

equation allows a direct application of this method to the Bounding Surface model. Since 
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the method explicitly satisfies the consistency condition, it often provides a more accurate 

answer than the trapezoidal method (used previously with the Bounding Surface model for 

clays) in fewer steps. However, it requires solving for and inverting a nonsymmetric 

matrix (8x8 Jacobian) in every iteration at the material point level. This Jacobian is 

eventually used to construct the consistent tangent moduli, so the tangent moduli are 

effectively being calculated in every iteration. Also, since the hardening modulus (Kp) 

grows rapidly near the elastic surface or projection point, the loading surface rate equation 

becomes ill-behaved and requires substepping for nearly elastic steps. 

The Reduced Newton method was developed from some of the concepts in the 

Closest Point Projection method. It maps the stresses, strains and consistency condition 

into invariant space and employs the Newton-Raphson method to solve the reduced set of 

equations. The loading surface relationship developed in Section 1.7 is still used, but in a 

more general form that avoids having the numerical stability problems. The method also 

has the advantage of solving for the stress increment first, then calculating the tangent 

moduli only for the converged stress solution. 

Both the Reduced Newton and the Closest Point Projection methods show the same 

behavior in terms of accuracy (Section 4). In addition, both methods tend to be more 

accurate than the trapezoidal method for integration of large plastic strains, because they 

explicitly include the consistency condition. For robustness, both methods (like the 

trapezoidal method) employ uniform substepping within the global strain increment, which 

assures a consistent level of accuracy within the global finite element mesh. 

The Reduced Newton method calculates a nearly exact Jacobian (i.e., "consistent 

tangent stiffness matrix"), while the trapezoidal method uses a tangent stiffness 

approximation. In light of this fact, is somewhat surprising that the two methods require 

substantially the same number of global iterations. This is most likely due to the fact that 

the dynamic analysis required very small time steps. 
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The development of the Reduced Newton method requires extensive mathematical 

manipulations and computer coding. The method is best suited for well established models 

for which reducing computational time is desired. On the other hand, the Closest Point 

Projection method is easier to implement and is ideal for testing constitutive models under 

development. 

From both an accuracy and cost standpoint, the trapezoidal method compared more 

favorably to the other two methods than expected. As a consequence, it may be desirable 

to attempt to correct the problem of straying outside the bound by strictly enforcing the 

consistency condition within the trapezoidal method. 

6.2  Recommendations for Future Research 

This study has suggested a number of possibilities for future research and 

improvements on the Bounding Surface model for clays and its numerical implementation. 

Recommendations for additional research in the numerical implementation of 

Bounding Surface models are as follows: 

a) Investigate a trapezoidal algorithm that explicitly satisfies the consistency condition. 

b) Investigate a Closest Point Projection algorithm where the interval is divided into N 

substeps, the first AM of equal length and the last with half of the spacing. For the 

first AM substeps, the finite difference equations would be written at the center of 

the substep (in an attempt to improve accuracy), while for the last substep a 

backward formula would be used so consistency at the end point is exactly 

satisfied. It is expected that this method might demonstrate the favorable 

convergence characteristics of the trapezoidal method. 

c) Extend the Reduced Newton method to three invariants. 

d) Further improve robustness of the methods by computationally efficient techniques, 

such as, variable substepping. 
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Specific recommendations for additional research on the existing clay model include 

the following: 

e) Determine a more computationally efficient expression for the hardening modulus 

inside the bound. The modulus described in Section 1.6 is extremely complicated 

and requires finite difference approximations for its derivatives. A simpler, 

computationally efficient modulus would improve the speed significantly. This 

simpler form would come from one or more of the following recommendations. 

f) Define a bounding shape that more closely follows the critical state line. Part of the 

reason for the complicated hardening modulus is that the elliptical shape extends far 

beyond the critical state line. Other shapes in the various regions have been tried 

with some success, but they have significantly increased both the complexity and 

the computational time of the model. 

g) Recast the consolidation law to eliminate the two solution regions defined by the 

transitional volumetric stress (/,). 

h)  Consider a model without a purely elastic region. This type of model would be 

more appropriate for clays and would eliminate the two separate solution regions.. 

i)    Consider treating the unloading implicitly (as was done for the Closest Point 

algorithm) instead of explicitly (i.e., calculation of the intersections). It is assumed 

that the global step sizes would be sufficiently small that this approximation would 

be valid (which is often the case in earthquake analyses). 

j)   Incorporate inherent and induced anisotropy into the model. 
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Appendix A. Derivatives for Single Ellipse Bounding Surface 

The Bounding Surface function for a single ellipse model is described in Section 

1.4 [Kaliakin, 1985; Herrmann, et. al., 1985; Herrmann, et. al., 1987]. The function is 

given as: 

F = I2+(R-\f 
2-R 

 /„/ + - 
R " R 

■It (A-l) 

As described in Section 1.8, the Bounding Surface function is differentiated with 

respect to the "image" stress using the chain rule and the invariants. This can be written as: 

dF     dF  dl     dF dJ     dF dß 
. + — -— + - 

dOy      dl dGy     dJ doy     dß d(Jy 

where     ß = sin(3a). 

The first derivatives are given as: 

(A-2) 
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The second partial derivative of F with respect to the "image" and current stresses is 

d2F d2F    dl      dF    d2I d2F    dJ     dF    d2J . + ___ . + ___ + -r=r' 
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The terms for the second derivative are found to be: 
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dai:dau    da,, dakl 'IJWU    w k! 

(A-14) 

d2s.. 
where     —-^ = 8ikÖß -\8in8jnökl 

do,,, 

X = 
3V3 

27 
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Y = ^nfnL_JSY   Su 2 

r a—-8.. 
J) 27    3  y 

<2X        3V3  dJ 

dakl       2J2 d(7k! 

dY 

da,,     2f 

, 2 3S 
65 SySu -2simsmjskl-9S 5.. — 

w 

*« 
_3S3jZiL + 272,   ^2L + 2725, "w 

d<7, d<7, 'ip do„ 

dS 

doh, 
-SkmSml       3°klJ   ■ 

It is especially important that the above definition of the invariants that involve \i be 

used to form the second derivatives. In the previous form (see Section 1.8), the term 

cos (a) appears several times in the denominator within these second derivatives. This 

creates numeric problems as cos (a) approaches zero. 
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Appendix B. Plastic Algorithms B and C 

Another approach for the plastic algorithm was developed originally for the Cam- 

Clay model [Herrmann, 1997]. This method solved a single nonlinear differential equation 

to evaluate the material behavior. Because of numerical problems near the volumetric stress 

axis (i.e., 7 = 0) and the apex of the ellipse (/ = maximum), different forms of the equation 

were used in these two regions. The first section of this appendix discusses the two 

separate equations that need to be solved when using this approach for the stress point 

algorithm. The second section describes the calculation of the consistent tangent moduli. 

Appendix B.l   Stress Point Algorithm 

Section 3.4 develops the nonlinear differential equations that describe the material 

behavior. The volumetric equations are given as: 

6 7^7--^0 = ^-^7^ 
P   1n+\ 

(/>//) (B.l-la) 

6 7n+,(
7--^0 = AÖ-}7 {Kit) (B.l-lb) 

The deviatoric equation is given as: 

4G2
n+lAt2zl+2Gn+lAtZ2 + J2n = 

\ 
l + 2G„+1Af^rn+A+1 

a, 
J n+i (B.l-2) 

The above equations are sufficient for the Cam-Clay model. For the Bounding 

Surface plasticity model, an additional equation is required to describe the plasticity 

behavior within the surface. The equation used is: 

Yn+] 
1 

K„ 

dF 

/>»*! dl 
4+, + 

dF 

n+i dJ2 "n+l •* n+l (B.l-3) 



The current algorithm described in Section 3.4 solves for / and J using the two 

nonlinear Equations B.l-1 and B.l-2 and then Equation B. 1-3 to solve for the plasticity 

parameter (7). The original implementation, which is consistent with the Cam-Clay model 

implementation [Herrmann, 1997], solved Equation B.l-3 and either Equation B.l-1 or 

B. 1-2 for / and b. The equation not used in this process was used to find the plasticity 

parameter. The choice of Equation B.l-1 or B.l-2 is based upon numerical considerations 

and is described later in this section. 

In both cases, the first equation is Equation B.l-3 and gives the Newton-Raphson 

residual: 

Rl=7n 
1 

+1 K 

dF 

/>„♦!    V 
dl 

4 + l   + 
dF 

n+\ df "n+l^n+l 
n + \ 

= 0 (B.l-4) 

Algorithm B uses Equation B.l-2 for the second equation. Equation B.l-1 is then 

used to solve for the plasticity parameter. Residual 2 is defined as: 
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*2 = l + 2Gn+1At^yn+lbn +1 J2
+l-4G2

n+1At2
Xl-2Gn+lAt%2-J2 =0       (B.l-5) 

AÖ--7"+' 

7n+i - 
ßl, rt+i 

6(7«+.-PO 
(/>/,) (B.l-6a) 

AÖ- 
1 /.. 

7, ß  h 
n+l 6(7n+1-p^+i) 

(/</,) (B.l-6b) 

Numerical problems arise in this algorithm near the apex of the Bounding Surface 

(7 = maximum) because the denominator of Equation B. 1-6 approaches zero. To resolve 

this problem, Algorithm C exchanges the second residual and the plasticity parameter 
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equations. Residual 2 and the plasticity parameter for Algorithm C are defined as: 

^=6r(I+,(/B+,-p/o.J-AÖ+^ = 0 (/>/,)       . (B.l-7a) 
P    ln+\ 

Äz=6 7JI+I(/II+I-p/o„1)-AÖ + ^ = 0 (KI,) (B.l-7b) 

-1+   -^-(4G„2
+1Ar2j1 +2Gn+1A% + 7„2) 

r     = llail  (B.l-8) 
2Gn+1At^bn+l 

a{ 

The plus sign before the radical is required to assure a positive plasticity parameter. 

Numerical problems arise in this algorithm, however, near the volumetric axis (i.e., J = 0). 

Solving for the plasticity parameter using Equation B.l-8 results in inaccurate estimates 

because of the division by small values of / (the J2 divisor within the radical). 

Because of the nature of these equations, the solution realm is broken into two 

zones: 

1) Algorithm B is used for solutions in the bottom half of the Bounding Surface 

(near the hydrostatic axis), and 

2) Algorithm C is used for solutions in the top half of the Bounding Surface (near 

the apex). 

The dividing point for the algorithms is arbitrarily taken as the half point and is 

based upon the second invariant value at the beginning of the step: 

AlgorithmB:  J2
b<^-N^ AlgorithmC:  J2

b>^-N-^- (B.l-9) 
2     bb 2     bb 

M 
where     N = —;==■ (angle of the critical state line in I-J space) 

V27 

M = angle of the critical state line in p-q space. 



Similar to Section 3.4, the independent variables / and b are chosen. The Newton- 

Raphson method requires derivatives of the residuals with respect to the independent 

variables. The derivatives of the first residual (Equation B.l-4) with respect to In+1 and 

b ^, are given as: n+J o 
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fdy\ 

„+i     V dl jn+l 

+ ■ 
1 frdF\ 

h+l + 
fdF^ 

Kp \\dl A + l \dJ    Jn+ 
^n+X^n+l 

J_ 
ydidiJn+i 

in+i + 
V dl )n+l 

+ 
(dF_) 

-w2 6« + l 
KM    Jn+\ 

j 
.(B.l-10) 

fm \ dRx '     +- 
(r 

db Jn+1     V * )„+i     Kp \\ dl Jn+1 

dF^ 
'B+i + 

(dF\ \ 

Vn+\Jn+l 

fdK,^ 

K„ 

'd2F^ 

\dldbjn+x 
In+: + 

fdF) 

&    )n + 

f dF^ 

v db ,B+1 

JL + 
\dJ2 Jn + l 

bn+l 

O/^ 
v db ,     , 
V /n + l/ 

(B.l-11) 

The derivatives of the second residual (Equation B.l-5) and the plasticity parameter 

(Equation B. 1-6) for Algorithm B are given as: 

(dRA 
= 4AA&. n+l l + 2Gn+lAt^yn+1bn+i 

a, 
Yn+ 

V       v &L + Gn+l 

dy 
\3l jn+lj 

n+l 

+ l + 2GB+1to-±yn+lbn+1 

2^dJ2^ 

V dI J   , 

/ 7 \(dG\ 
- 8G„+1A/2j1+2Aa2   — 

(B.l-12) 

'<3fc^ 

#J„+ 

Li"! 

4A^G„+1 l + 2Gn+1A'—7„+A +i r„+i+*„+i \db)n+ 

J, n+l 

\J 

+ i+2Gn+lAt—yn+A+l 

2^dJ^ 
(B.l-13) 

a, Kdb J   , 
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(LI-PO 

J_ 
~6ß 

'7 n + l 

 n+l 

A^ '\ 
-P 

# 

di Jn+\ j 

(/>/,)        (B.l-14a) 

\dlj „+1    (7B+1-p/„.JL 60Atf, 
■-y„ +i 

v <# A+I 
(/</;)(B.l-14b) 

7/i+i 

(Jn + 1-Pl0,.t) 

(B.l-15) 

n+l 

The derivatives of the second residual (Equation B.l-7) and the plasticity parameter 

(Equation B.l-8) for Algorithm C are given as: 

fat? \ dR 

V di Jn+ 
= 67n+i 

( 3t \ dl. 

dl)n+ 

+ 
ij 

6(7-.-P^,) V di jn+x 
(7>//)(B.l-16a) 

+- 
PX+, 

l    /, n + l 

Ar    /. n + l J 

V di Jn+l 

= 67n + l 
V^A+i v <?/ y„+i 

+ 6(/„+1-p/0J 
(7</,)(B.l-16b) 

+- 
ßMn+l 

fdR.^ 

V db )n+x 

= 67n+, 
V /n + l 

+ 6(/„+i-P^+1) 
V*A+1 

(B.l-17) 
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(8G„+1Ar2^+2A%) 
fdG] 

dl )n+ 

\ + 2Gn+lAt^bn+lyn+i 

^a/2^ 

\dl Jn+\        , ~      K.<h u       r2 

V /n+l. 

l + 2G„+1Ar-^B+1r„+I 
a, 

r, n+l <9G^ 
G«+i v <?/ J„+i 

(B.l-18) 

\dbjn+x 

CL-, 
l + 2Gn+lAt^bn+l7n+l 

^v#n 
j V /n+l 

4G„+1Ar^^n+17„2
+1 

«i 

r» +i 

Jn + l 

(B.l-19) 

The convergence criterion chosen for this study is that the change in residuals must 

be smaller than a user-defined percentage of absolute value of the total strain increment. 

The first residual is in terms of the plasticity parameter. In order to compare its value at the 

magnitude of strain, the residual and its derivatives are multiplied by the following: 

ti =zR}, 
dR[ 
dl 

= z 
3% 
db 

= z 
db 

(B.l-20) 

where      z = 3 

Algorithm C uses the volumetric Equation B. 1-7 for the second nonlinear equation, 

which is already in terms of strain. Algorithm B, however, uses the deviatoric Equation 

B. 1-5, which is in terms of stress. Its residual is scaled to the magnitude of strain by 

dividing it and its derivatives by the initial shear modulus. The new residual and 

derivatives are given as: 

£=■ 
R, 

dl 

1  dR2 

Gl  dl 

d% 
db 

1  dR2 

G2
b  db 

(Algorithm B) (B.l-21) 



The norm as described in Section 3.4 is based upon a percentage of the input strains 

and is defined as: 
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11*11 = 
1^1 +|/?2 (B.l-22) 

where     \\R\\ = norm on the residuals. 

The Newton-Raphson algorithm is the same as described in Section 3.4 and is 

given as: 

w,■+,.„+, W,>+i   ''^W,,^ 
(B.l-23) 

where     *F = 
dR2 

di 

dRx 

dR2 

Residual 2 in the Jacobian Q¥) is dependent on the algorithm being used. The algorithm is 

shown in Box B.l-1. 
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Box B.l-1. Algorithms B and C for Plastic Steps. 

1. Set Substep Level:     N= 1 

2. Substep Level Loop: m = l,mn 

As,, 
Af.,. 

N 

3-   Initialize to Beginning of Step: 

In+1 = h, bn+1 = bb 

4. Substep Loop: k = 1,N 

5. Determine Volumetric Form: 

(/>/,)   Linear-Linear (/</,)   Log-Linear 

6. Determine Algorithm: 

J2
b<£-N^    Algorithm B Jl>^N- 

2    bb "    2    bb 

Algorithm C 

7. Iteration Loop: It - l,Itmax 

8. Calculate Residuals and Local Jacobian: R,, R2, W 

9. Solve for Increment in Variables: AIn+I, Abn+1 

10. Calculate and Test Norm: IF (\\R\\< Tolerh) 

TRUE:  Go to step 11 

FALSE: Increment variables, In+1, bn+], Go to step 7 

11. Calculate Stresses and Check Substeps:  <Jn+J 

JF(k<N)    TRUE: Go to step 4     FALSE: Go to step 12 

12. Compare stresses with previous substep level: 

(/       -10        )< Toler, 1    OR   \lt > ItmJ 
\    °f,*\,m °n+\.m-\ j 'o L max J 

TRUE: EXIT FALSE: N = 2N, Go to step 2 
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Appendix B.2  Plastic Contribution to the Global Jacobian 

Once the stress algorithm has converged, the plastic contribution 
do„ 

KdA£UJn+l 

to the 

global Jacobian matrix must be calculated. The local Jacobian will be evaluated in terms of 

the deviatoric and volumetric components, similar to the elastic Jacobian. The volumetric 

component can be obtained by noting that the residuals are a function of the independent 

variables (I, b) which, in turn, are a function of the strain increment. The derivatives can 

be obtained by an application of the chain rule (i.e., holding the independent variables 

constant and then adding the derivatives with respect to the independent variables). At 

convergence, the residual is equal to zero and the derivatives can be written as: 

VdA£uJn+l 

dR 
dAe, 

+ ■ 

/.♦,.*„♦, 
dl 

dl 

6„-, dA£kl 

+ ■ 

n + 1 

dR, 

db 

db 

dAe, 
= 0 

t+i 

(B.2-1) 

Expressed in matrix form: 

' dR, 

dAek, 
dR2 

dAekl 

■ = < 

n+i 

dR, 

dAekl 

dR2 

^Aekl 

+ *¥ 

',*iA*i 

dl 

dAek 

db 
dAe, 

lol 
(B.2-2) 

where      T = 

'dR, 

dl 
dR2 

dl 

dR, 

dR2 

h        
db 

4+l 

J«+l 

The local Jacobian Q¥) is the same as that required in the local Newton-Raphson 

iteration (B. 1-23). The derivatives of the independent variables with respect to the strain 



increments can be found by solving Equation B.2-2: 
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dl 

dAsk 

db 

dAs, 

= -¥ -i 

n+l 

dR 

dAsk 

dR 

dAs kl ) 

(B.2-3) 

/„♦■A,. 

The derivatives of the residuals with respect to the strain increments are calculated 

holding the independent variables at the end of the step (In+!, bn+1) constant. It is important 

to note that the shear modulus (Gn+1) is a function only of the current volumetric stress 

(In+]), and therefore is also fixed. For both algorithms, the derivative of the first residual is 

given as: 

dR 
dAs, 

dyn +1 

'„♦,.*„. 
dAs 

K„ 

+ - _1_ 

Kl 

1 dF  dL 

dF ■     dF 
—/ + -=T- 
dl dj2 

bJ1 

At dl dAs, 
i».,A. 

dF ,  dj2 

dJ2   dAs,, 
i„+,A+J 

(B.2-4) 

The derivatives of the second residual for Algorithm B and that of the plasticity 

parameter are given as: 

dR, 
dAs, 

= 4Gn+lAt^bn+] 
a-, 

i+2Gn+lAt^rn+lb, n+l n+l 

'„♦,.*„♦, 
dAs, 

',(1,»,.i 

+ l + 2Gn+lAt^yn+1bn+l 
a, 

dJ. n+l 

dAs, 

-IGlAt2-^- 
dAs,, 

■2Gn+lAt- 

I..,.b.. 
dAs, 

dJl 

/„*,,*. 
dAs, 

(B.2-5) 

'»„A., 
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<?7„+, 
dAe, 

/„+.-Vi (/n+1-p/0sJ 

6 

-7, 

_1 dl^_ 

ßAtIn+] dAek 

n+\ 

dl 
dAe, 

-P- 
i^A- 

> \ 

',.iA*i , 

<„ 
<?A£„ 

(/>/;)(B.2-6a) 

<?7„+i 
eAe, 

CA- (7»+i-/>0 
-r„ 

l    <?/ 
w   ySAr^ <9Ae 

+i 

<?7. 
<9Aet 

-p — 
,   u d&£kl /.♦i .*.+i y 

(7</;)(B.2-6b) 

For Algorithm C, the derivatives of the second residual and the plasticity parameter 

are given as: 

dR, 

dAe, 
= 6r„+l 

/„♦,.*„♦. 

dln+l 

dAe, 

dl„ 

'.,.A,i 
dAe,, 

+6(7--<*<•... )f£f dAe, 
',t,At. 

k'    ßMn+l dAek 

(7>/,)(B.2-7a) 

/.*,,*. 

dR, 

dAe, 
67n+l 

/„,,/>„. 

din 
dAe, 

dL 
-P 

'.„A,, dAe, 
'«tiA+i / 

M^-rOh 
(7</,)(B.2-7b) 

■sa- 
l      <#„ 

'„♦■A,.! 
/jAtf, <?Aefc 

'..,.*„♦, 

<?7„+, 
dAe, 

( a^ 
l + 2G„+lAr-^Z7„+]7„+ 

a. 

dJ. n+l 

öAe,. 
+ 4G„2

+IAr2 ^ 

4+,A+i 
c?Ae 

/..,,*.. 

+2Gn+lAr^- 
dAe,, 

+ - dJl 

v„v,    ^ (B.2-8) 

ViA- 4G„+lA^^+,7„2
+] 

a.. 
l + 2G„+]A^Z>„+l7„ 

a, +i 



The derivatives in Equations B.2-5 through B.2-8 are as follows: 
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dl 

dAe, 
= c(i-K+1) dl 

U,A. 
dAe, 

/„+iA+i 

(B.2-9) 

dl 

dAe, 
(*-CIo) dbn 

L„A. 

-b 

At     dAe, 

1    dl 

l^A, 
dAe, 

At dAe, 
+ C(l-b) 

dl 

'„+iA+i 
dAe, 

CiA+, 

VnA+. 

(B.2-10) 

dl 

dAe, 
= 'Jt8k 

V>A+I 

(B.2-11) 

dL 
dAe, = S 

( 
A6- 

1   7 i \ 

'„+.A,+i ßl 

dl 

V H 'n+1 J 

C 

+^+1 

dA£«,     b 

1        dl 
k,+~AtßIn+]dAekl i^A^J 

(/>/,)        (B.2-12a) 

dl 
dAe, = £ 

i \ 

A6- 
dl 

4+i A+\ 

1 7 
ßI1)dAekl 

/„+,A,+i 

+^ 5   +_J ?l_ 
kl    At ß 7, dAekl 

h*\A*\ ) 

(/</,)        (B.2-12b) 

2 
[7        *' 

4+lA,+> 

P^0 

<2/2 ''-* dAekl 

<?Aea 
/„♦.A-,      ^ 

-<h{jn+\-Phn) 
r ^7 

<9Aew L,A,     ^dA£« 

(B.2-13) 
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dj2 

dAe, 
2JL    dbn 

At bn+] dAekl 
'«4.1  f^B+1 

2b   dJ2 

+- 
aiK+\ 

dL 

*>„+i dAekl /..,.*.. 

""' dAe, 
+ L 

dL 

CiA+i 

"«.(Li-P^J 

°"+' <?Ae, 

(9/ 

'«i.Vi 

öAe, 
dL 

"Ah«-Ph„x 

dl 

dAe, 

i^x. 

/..,,*.. 

dAe, 

dL. 
dAe, 

/»♦>A,+I 

I^b,+\) 

(B.2-14) 

<fri 

<9Ae,, 
ViA,*. 

dXx 
dAe,, 

= e,. (B.2-15) 

d%2 
dAe, 

d%: 2     _ 
■V + e«„. 

'_*j^ 

V^A 
(B.2-16) 

The derivative of the deviatoric stress with respect to the increment in strain 

in Equation B.2-16 is evaluated at the beginning of the step or substep. If the 

initial portion of the step was elastic, then this derivative is calculated using Equation 3.3-4. 



If, on the other hand, the initial portion of the step was plastic, then the derivative comes 

from the previous plastic step. The deviatoric stress derivative at the end of the step is 

defined as: 
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2AtAen lJn +1 

(dG\    (   dl   A 

V dl Jn+l \dA£«Jn+l 

+ 2Gn+lAt 
\dA£

kUn+l 

f  j„    A 
+ 

ds, 

\dA£«Jn 

r 

-2At-2-s, 
a, y„+i 

Yn+l®n + l 
fdG^ 

\dA£
klJn+x 

+ Gn+{Yn+] 

f  db  ^    A 

v dAe,,,   , 

+Gn+A+i 

dAe, 
+ 

',.,A„ 
\dlj 

f   dl   ^ 

n+\dAskl yv^ujn+i 

+ 
v \dbjn+l 

fjb_^ 

VdA£>äJn+l (B.2-17) 

\ + 2Gn+1At-±yn+lbn+l 
a, 

This derivative requires the derivatives 

Equation B.2-3. 

KdAeUJ 

and 
f  db  ^ 

v dA£u j 
, which are given by 
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Appendix C.  Strain Calculations for "Exact" Solutions 

Appendix C. 1  Volumetric Problems 

In order to verify that the numerical implementation of the Bounding Surface 

models are calculating the correct results, several "exact" solutions were constructed. Exact 

is in quotes because in some cases (such as the volumetric tests) the exact solution can be 

found. In general, however, numerical integration is required. The "exact" solutions are 

constructed by starting with a stress point on the Bounding Surface, giving the surface and 

the stress point a known movement together and calculating the strains required to achieve 

the movement. Since the stress point starts on the surface, this solution could also be used 

to test a Cam-Clay model. 

The "exact" solution is constructed by assuming a linear expansion with time (t) of 

the Bounding Surface size (I0): 

I0(t) = Io,+t (C.l-1) 

where     /„ = initial Bounding Surface size. 

The derivative of this Bounding Surface expression with respect to time is: 

/ =1 (C.l-2) 

The previously defined rate equation for the Bounding Surface hardening [Kaliakin, 

1985] is given as: 

/„ = f^(W<W,)+/,)r§ (C1.3) 

where     v0 = 1 + e0 = initial specific volume 

e0 - initial void ratio 
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X = normal consolidation line 

K= elastic load-reload line 

// = Limit stress for linear relationship 

7= plasticity parameter (loading index). 

Consider the case when the value of I0 is less than the transition stress (//). The 

Bounding Surface relationship reduces to: 

-      3v0I,       dF 
I    =  —L    Y    —=r 

"     X-K        dl (C.l-4) 

where     I = b(l-Ic) + Ic 

b = measure of distance between stress point and surface 

C = material constant defining the projection center location. 

The single ellipse Bounding Surface function is defined [Kaliakin, 1985] as: 

F = I2+(R + lf 
f rV     2   . T . 2-R r2 J_ 

KNj R R (C.l-5) 

The intercepts of the Bounding Surface with the volumetric axis (7 axis) are: 

I   = U   ; (C.l-6) 

The derivative of the Bounding Surface function (Equation 1.4-1) with I is: 

£ = 27-!/. 
dl R (C.l-7) 
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Substituting Equation C.l-7 into Equation C.l-4 and recalling Equation C.l-2: 

KM 3 v0 I, 
X-K 

r 2I--I0(t)\   =    1 
(C.l-8) 

Equation C. 1-8 can now be solved for the plastic parameter (f): 

7 = 
1 

\Sv0ii)  2I-^I0(t) 
(C.l-9) 

The rate equation for the plastic volumetric strain (6f) is given by the volumetric 

form of Equation 1.2-2 [Kaliakin, 1985]: 

6P = 3y 
dF_ 

dl (C.l-10) 

Substituting in the expressions for the plastic parameter and derivative (Equations 

C.l-7 and C.l-9) yields: 

6P = 
X-K 

(C.l-11) 

The plastic volumetric strain can be obtained by integrating the rate with respect to t: 

ep{t) = LJLt +  c 
(C.l-12) 

where     C = constant of integration. 

The constant of integration is evaluated by noting that & = 0 at / = 0, and therefore 

C = 0. Thus the equation for the plastic volumetric strain is: 

0'(O = 
fX-K^ 

V Vo I, J (C.l-13) 
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The total volumetric strain consists of both the plastic and elastic strain. This 

relationship is given by the familiar decomposition of strains written in volumetric form: 

e(t) = Oe(t) + 0"{t) (C.l-14) 

In order to determine the elastic volumetric strain, the stress history is required. 

For volumetric stresses (/) less than the transition stress (//), the bulk modulus (K) is 

constant: 

3 K (C.l-15) 

The volumetric stress rate is defined as: 

i(t) = 3K6e(t) (CM6) 

Equation C.l-16 can be integrated for the elastic volumetric strain {&). This is a 

straightforward integration since the bulk modulus is constant. The constant of integration 

is zero since / = 0 at ff = 0. Substituting the elastic strain, the plastic volumetric strain (p 

in Equation C.l-13) and the bulk modulus (üfin Equation C.l-15) into Equation C.l-14, 

the total strain can be written as: 

6{t)   =    *M. + 
v„h V v» h J (C.l-17) 

Consider a volumetric tension test. The stress point originates on the volumetric 

axis intercept of the Bounding Surface on the tension side (for R > 0) and remains there 

throughout the test. I(t) can be defined by the tension side intercept of the bounding 

surface (first term of Equation C.l-6). Substituting this into Equation C.l-17 results in the 
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volumetric strain as a function of the Bounding Surface size only: 

d(t) (',+') + 
»oh (C.l-18) 

This equation for strain highlights a problem with the Bounding Surface rate 

relationship given in Equation C.l-3. When considering the case where the Bounding 

Surface collapses to zero (i.e., /„ -» 0 ), t cannot be less than - /„ . Therefore the total 

tensile volumetric strain in this limit cannot exceed: 

*K) 
(C.l-19) 

Tensile strains exceeding this value will cause the model to have numeric 

difficulties. In order to avoid this problem, one approach is to reconsider the Bounding 

Surface rate (Equation C.l-3). Since there was no experimental evidence cited for the 

transition from a log to linear rate form, the linear portion is dropped. The rate equation for 

l0 (previously defined in Equation C.l-3) is now defined: 

A-K dl (C.l-20) 

Note that this form of the rate equation is valid on either side of the transition stress. 

The plastic parameter is now solved for: 

7 = 
v3uw 

1 

2ii0(t)--m 
(C.l-21) 

Substituting the plasticity parameter into the rate equation for the plastic volumetric 



strain (6^) (Equation C.l-10) results in: 
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e p — U-K^ 

V   V<>    J m 
Integrating to get the plastic volumetric strain gives: 

fX-K^ 
6»{t)=  —    In (/,(*))+ C 

V   v„   J 

(C.l-22) 

(C.l-23) 

The constant of integration is obtained, noting that $ = 0 at t = 0: 

C 
U-K^ 

V   Vo    J 
In (/„(*)) 

The equation for the plastic volumetric strain as a function of time is: 

ep(t) = 
'X-K^ 

V   Vo    J 

(       ( r ( \V* 
In   i© 

V        V    1",     )) 

(C.l-24) 

(C.l-25) 

Substituting this relationship into the equation for the total volumetric strain 

(Equation C. 1-14) for tensile tests results in: 

Vo,  +t) +      ln 

v„ 

fL ^ 

\    °i   J (C.l-26) 

When considering the case where the Bounding Surface collapses to zero 

(i.e., Ir) —> 0), t = - In . The total tensile volumetric strain is now given as: 

e{-io) = -co 
(C.l-27) 
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Now in order to collapse the Bounding Surface to zero, an infinite value of tensile 

volumetric strain is required. Although the precision of the machine will limit this strain, 

the formulation will avoid the numerical difficulties of the previous formula. 

For volumetric stresses (/) greater than the transition stress (//), the bulk 

modulus(iT) is now a function of the volumetric stress: 

K _ VQ !(*) 

3 K: (C.l-28) 

The integration of the elastic volumetric strain (Equation C.l-16) results in a 

slightly more complex expression: 

6{t)   =   —   ln(/(r)) + C 
u„ (C.l-29) 

Solving for the constant of integration results in: '6 

m - - *(m 

v 1(0) (C.l-30) 

Consider a volumetric compression test. The volumetric stress (I) would originate 

on the compression side, intercept with the Bounding Surface and remain on the surface as 

the bound expands. Substituting for the volumetric stress (i.e., second term of Equation 

C.l-6), the total strain becomes a function of the Bounding Surface size: 

0(r)   =   — In 
rL +^ 

V I (C.l-31) 

The volumetric compression test in Section 4.2.1 used Equation C.l-30 to calculate 

the strains. The Bounding Surface parameters are given in Table C.l-1. The void ratio 

was given as e0 = 0.94. The problem definitions are given in Table C. 1-2. 

The volumetric tension test in Section 4.2.2 used Equation C.l-26 to calculate the 

strains. The Bounding Surface parameters and the void ratio are the same as the 
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compression test. The parameters defining the problem definitions for the tension tests are 

given in Table C.l-3. 

Table C.l-1. Bounding Surface Model Parameters 

Traditional Model 

Parameters 

Surface Configuration 

Parameters 

k = 0.14 

K = 0.05 

Mc= 1.05 

v = 0.2 

R = 2.6 

Table C.l-2. Volumetric Compression Problem Definitions 

Bound Size, I0 Volumetric Stress, / Volumetric Strain, 6 

Beginning 81 81 0 

Final 91 91 -0.00840075 

Table C.l-3. Volumetric Tension Problem Definitions 

Bound Size, I0 Volumetric Stress, / Volumetric Strain, 6 

Beginning 0.9 0.207692 0 

Final 0.5 0.115385 0.0274708 
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Appendix C.2  Shear Problem 

A problem is designed to test the behavior of the model in shear. In order to make 

finding the exact solutions tractable, some simplifying assumptions are made: 

1) the first invariant remains constant (i.e., In+1 = /„), and 

2) the third invariant is zero (5 = 0). 

Similar to the volumetric cases, a linear variation in I0 is assumed: 

h(t) = h+t (C.2-1) 

As derived in the previous section (Equation C.l-21), the plastic parameter (f) is 

given as: 

r 
v3uw 

l 

K (C.2-2) 

The plastic volumetric strain (Equation C.l-25) is given: 

ep(t) = 
' X-K ^ 

V    V„    J 

In 
(C.2-3) 

Since the volumetric stress (/) is assumed to remain constant, the total volumetric 

strain can be expressed: 

e(t) =  ep(t) (C.2-4) 

The second image stress invariant (J) is obtained as a function of time by recalling 

the equation for the Bounding Surface (Equation C.l-5) and noting that F - 0: 

7(0 = _N__ 
(R-l) I2+^h(t)I 

2-R 
R 

m 
(C.2-5) 



The equation for N is defined as: 

N = - 
2N. 

1 + - 
N. 
N. 

r
i_NI]3^3fS^3 

c \ N, 2   [j (C.2-6) 

Noting that the third invariant is assumed to be zero (i.e., 5 = 0), the equation for N 

becomes constant and can be written as: 

N = 
2N„ 

1 + 
AT 

(C.2-7) 

For tests originating and remaining on the surface, the first and second invariants 

can be simplified to: 

/=/       J=J (C.2-8) 

In order to ensure that / = constant and 5 = 0, the following assumption on the 

deviatoric stresses is made: 

■^ll   ~~ STl  ~ SM  ~ Sn ~ S23 ~ "' ^12  ^ " (C.2-9) 

The shear stress (072) can be written as: 
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cr12(0 = s12(t) = J(t) 

The rate equations for the plastic deviatoric strains are defined as: 

(C.2-10) 

^=7 
dF_ 

dslt (C.2-11) 
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The derivatives of the Bounding Surface function (F in Equation C.l-5) with 

respect to the deviatoric stresses are given as: 

d^_dFdJ_    dF dß 

dsy      dJ dsy     dß dsi} (C.2-12) 

where     ^ = sin(3a) 

Specific derivatives of the Bounding Surface function are given as: 

dJ        ^       ' N2 (C.2-13) 

dF 

dß 
= -2(Ä-l) 

N3 dß 
(C.2-14) 

dN 

dß 

N1 l__t 

2N„ 
(C.2-15) 

f »7     "\ 

I-" 
V lycJ Jl 

^ = -(R-lf 
dß Ne       N (C.2-16) 

The derivatives of the invariants with respect to the deviatoric stresses are: 

dJ      dJ       dJ       dJ      dJ 

dsu     ds22     ds33     dsn     ds. 23 (C.2-17) 

dJ      1 

dsn 2 

dß dß _^3 
dsu ds22 2/ 

(C.2-18) 

(C.2-19) 
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dfl V3 
cfc33 J 

dß dß       d/J. 

ds]2 C/iJ'I'l                   C/'J'JT 

0 

(C.2-20) 

(C.2-21) 

Upon combining these terms, the derivatives of the Bounding Surface function with 

respect to the deviatoric stresses are defined as: 

dsx!     ds22 2 

1-^ 

NN 
J(t) 

(C.2-22) 

<9F 

iV„ 

cfc 
= V3(i?-l)2^ 

N, c J 

33 WW. 
7(f) 

(C.2-23) 

<?F 

efc 
= 2(i?-l)2-^7(0 

12 iVz 
(C.2-24) 

<?F      <?F 

Coi'J C/tJ^T 

= 0 
(C.2-25) 

Substituting in the plastic parameter (Equation C.2-2), the second invariant 

(Equation C.2-5), and the derivatives (Equations C.2-22 through C.2-25) into the 

deviatoric strain rate (Equation C.2-11), the rates can be written as: 

M 1        e22 12 
(R-l) 

fl-^1 
t      Nc) 

N. 

K K 

Ho(t)~ll(t) 
(C.2-26) 

ep = - 2 ep e
33 ^ ell (C.2-27) 
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3 -12 

X-K 

v„ 

1_ 

N 

7*+± /,(,)/- 
R 

2-R 

R 
m 

im-\m 
(C.2-28) 

To obtain the plastic deviatoric strains, these rates must be integrated thus requiring 

numerical evaluation of the last term. With this approximation, the deviatoric plastic strains 

can be expressed as a function of time. The total deviatoric strains are obtained by recalling 

that: 

s^G(e,-el) (C.2-29) 

The shear modulus (G) is a function of the bulk modulus (K) which, in turn, is a 

function of the first stress invariant (/). Assuming that / = constant, the shear modulus is 

also constant. From Equation C.2-9, the total deviatoric strains are obtained: 

°\ 1       g22 — ß22       g33       g33 (C.2-30) 

U0 = ^ + <2« 

Finally the total strain histories are calculated using Equation C.2-4: 

£„(0 = ^(0+3 ÖW       (no sum) 

(C.2-31) 

(C.2-32) 

EIJ(t) = eiJ(t) (C.2-33) 

The Shear Test 1 in Section 4.2.3 used the Bounding Surface parameters given in 

Table C.l-1. The void ratio was given as e0 = 0.94 and the volumetric stress was set to I = 

81 psi. The parameters defining the problem are given in Table C.2-1. 

Shear Test 2 in Section 4.2.4 also uses the Bounding Surface parameters given in 

Table C.l-1. The void ratio was given as e0 = 0.94, the volumetric stress was set to 



/ = 60 psi and the initial shear stress was given as a12 = 3.63731 psi. The parameter 

definitions are given in Table C.2-2. 

Table C.2-1. Shear Test 1 Definitions 
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Bound Size, I0 Volumetric Strain, 6 Shear Strain, eI2 

Beginning 81 0 0 

Final 91 0.00540048 -0.0114129 

Table C.2-2. Shear Test 2 Definitions 

Bound Size, I0 Volumetric Strain, 0 Shear Strain, e12 

Beginning 81 0 0 

Final 91 0.00715132 -0.0177091 


